The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A085945 Number of subsets of {1,2,...,n} with relatively prime elements. 24
 1, 2, 5, 11, 26, 53, 116, 236, 488, 983, 2006, 4016, 8111, 16238, 32603, 65243, 130778, 261566, 523709, 1047479, 2095988, 4192115, 8386418, 16772858, 33550058, 67100393, 134209001, 268418531, 536853986, 1073707991, 2147449814, 4294900694, 8589866963 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..3321 (first 300 terms from T. D. Noe) Mohamed Ayad and Omar Kihel, The number of relatively prime subsets of {1,2,...,n}, Integers 9, No. 2, Article A14, 163-166 (2009). M. Ayad, V. Coia and O. Kihel, The Number of Relatively Prime Subsets of a Finite Union of Sets of Consecutive Integers, J. Int. Seq. 17 (2014) # 14.3.7, Theorem 1. Mohamed El Bachraoui and Florian Luca, On a Diophantine equation of Ayad and Kihel, Quaestiones Mathematicae, Volume 35, Issue 2, pages 235-243, 2012; DOI:10.2989/16073606.2012.697265. - N. J. A. Sloane, Nov 29 2012 Adrian Łydka, On some properties of the function of the number of relatively prime subsets of {1,2,...,n}, arXiv:1910.02418 [math.NT], 2019. Melvyn B. Nathanson, Affine Invariants, Relatively Prime Sets and a Phi Function for Subsets of {1, 2, ..., n}, INTEGERS: Electronic Journal of Combinatorial Number Theory, 7 (2007), #A1. P. Pongsriiam, Relatively Prime Sets, Divisor Sums, and Partial Sums, arXiv:1306.4891 [math.NT], 2013 and J. Int. Seq. 16 (2013) #13.9.1. P. Pongsriiam, A remark on relative prime sets, arXiv:1306.2529 [math.NT], 2013. P. Pongsriiam, A remark on relative prime sets, Integers 13 (2013), A49. M. Tang, Relatively Prime Sets and a Phi Function for Subsets of {1, 2, ... , n}, J. Int. Seq. 13 (2010) # 10.7.6. László Tóth, Menon-type identities concerning subsets of the set {1,2,...,n}, arXiv:2109.06541 [math.NT], 2021. FORMULA Partial sums of A000740. G.f.: 1/(1-x)* Sum_{k>0} mu(k)*x^k/(1-2*x^k). a(n) = 2^n - A109511(n) - 1. - Reinhard Zumkeller, Jul 01 2005 a(n) = Sum_{k=1..n} mu(k)*(2^floor(n/k)-1). - Geoffrey Critzer, Jan 03 2012 EXAMPLE For n=4 there are 11 such subsets: {1}, {1,2}, {1,3}, {1,4}, {2,3}, {3,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}. MAPLE b:= n-> add(`if`(d=n, 2^(n-1), -b(d)), d=numtheory[divisors](n)): a:= proc(n) option remember; b(n)+`if`(n<2, 0, a(n-1)) end: seq(a(n), n=1..35);  # Alois P. Heinz, Oct 05 2018 MATHEMATICA Table[Sum[MoebiusMu[k] (2^Floor[n/k] - 1), {k, 1, n}], {n, 1, 31}]  (* Geoffrey Critzer, Jan 03 2012 *) PROG (PARI) a(n)=sum(k=1, n, moebius(k)*(2^floor(n/k)-1)) \\ Charles R Greathouse IV, Feb 04 2013 CROSSREFS Cf. A000740, A109511. Row sums of A143446. Column k=2 of A143327. Sequence in context: A053429 A266879 A104237 * A005469 A218575 A159929 Adjacent sequences:  A085942 A085943 A085944 * A085946 A085947 A085948 KEYWORD nonn,changed AUTHOR Vladeta Jovovic, Aug 17 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 04:51 EDT 2021. Contains 347703 sequences. (Running on oeis4.)