login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Table T(n,k) by antidiagonals. T(n,k) is the number of primitive (=aperiodic) k-ary words (n,k >= 1) with length less than or equal to n which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
12

%I #26 Oct 05 2018 16:10:57

%S 1,1,1,1,2,1,1,3,5,1,1,4,11,11,1,1,5,19,35,26,1,1,6,29,79,115,53,1,1,

%T 7,41,149,334,347,116,1,1,8,55,251,773,1339,1075,236,1,1,9,71,391,

%U 1546,3869,5434,3235,488,1,1,10,89,575,2791,9281,19493,21754,9787,983,1,1,11

%N Table T(n,k) by antidiagonals. T(n,k) is the number of primitive (=aperiodic) k-ary words (n,k >= 1) with length less than or equal to n which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.

%C The coefficients of the polynomial of row n are given by the n-th row of triangle A134541; for example row 4 has polynomial -1+k^2+k^3.

%H Alois P. Heinz, <a href="/A143327/b143327.txt">Antidiagonals n = 1..141, flattened</a>

%H <a href="/index/Lu#Lyndon">Index entries for sequences related to Lyndon words</a>

%F T(n,k) = Sum_{j=1..n} Sum_{d|j} k^(d-1) * mu(j/d).

%F T(n,k) = Sum_{j=1..n} A143325(j,k).

%F T(n,k) = A143326(n,k) / k.

%e T(3,3) = 11, because 11 words of length <=3 over 3-letter alphabet {a,b,c} are primitive and earlier than others derived by cyclic shifts of the alphabet: a, ab, ac, aab, aac, aba, abb, abc, aca, acb, acc.

%e Table begins:

%e 1, 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 2, 3, 4, 5, 6, 7, 8, ...

%e 1, 5, 11, 19, 29, 41, 55, 71, ...

%e 1, 11, 35, 79, 149, 251, 391, 575, ...

%e 1, 26, 115, 334, 773, 1546, 2791, 4670, ...

%e 1, 53, 347, 1339, 3869, 9281, 19543, 37367, ...

%e 1, 116, 1075, 5434, 19493, 55936, 137191, 299510, ...

%e 1, 236, 3235, 21754, 97493, 335656, 960391, 2396150, ...

%p with(numtheory):

%p f1:= proc (n) option remember; unapply(k^(n-1)

%p -add(f1(d)(k), d=divisors(n) minus {n}), k)

%p end:

%p g1:= proc(n) option remember; unapply(add(f1(j)(x), j=1..n), x) end:

%p T:= (n, k)-> g1(n)(k):

%p seq(seq(T(n, 1+d-n), n=1..d), d=1..12);

%t t[n_, k_] := Sum[k^(d-1)*MoebiusMu[j/d], {j, 1, n}, {d, Divisors[j]}]; Table[t[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* _Jean-François Alcover_, Dec 13 2013 *)

%Y Columns k=1-10 give: A000012, A085945, A320087, A320088, A320089, A320090, A320091, A320092, A320093, A320094.

%Y Rows n=1-4 give: A000012, A000027, A028387, A003777.

%Y Main diagonal gives A320095.

%Y Cf. A143325, A143326, A134541, A008683.

%K nonn,tabl

%O 1,5

%A _Alois P. Heinz_, Aug 07 2008