login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062692
Number of irreducible polynomials over F_2 of degree at most n.
9
2, 3, 5, 8, 14, 23, 41, 71, 127, 226, 412, 747, 1377, 2538, 4720, 8800, 16510, 31042, 58636, 111013, 210871, 401428, 766150, 1465020, 2807196, 5387991, 10358999, 19945394, 38458184, 74248451, 143522117, 277737797, 538038783, 1043325198
OFFSET
1,1
COMMENTS
Number of binary pre-necklaces of length n. - Joerg Arndt, Jul 20 2013
LINKS
P. Burcsi, G. Fici, Z. Lipták, F. Ruskey, and J. Sawada, On prefix normal words and prefix normal forms, Preprint, 2016.
G. Fici and Zs. Lipták, On Prefix Normal Words.
G. Fici and Zs. Lipták, On Prefix Normal Words, Developments in Language Theory 2011, Lecture Notes in Computer Science 6795, 228-238.
Kenneth H. Hicks, Gary L. Mullen, and Ikuro Sato, Distribution of irreducible polynomials over F_2, in Finite Fields with Applications to Coding Theory, Cryptography and Related Areas (Oaxaca, 2001), 177-186, Springer, Berlin, 2002.
M. Waldschmidt, Lectures on Multiple Zeta Values, IMSC 2011.
FORMULA
a(n) = Sum_{m=1..n} (1/m)*Sum_{d | m } mu(d)*2^{m/d}.
a(n) = A091226(2^(n+1)).
G.f.: (1/(1 - x)) * Sum_{k>=1} mu(k)*log(1/(1 - 2*x^k))/k. - Ilya Gutkovskiy, Nov 11 2019
MAPLE
with(numtheory):for n from 1 to 113 do sum3 := 0:for m from 1 to n do sum2 := 0:a := divisors(m):for h from 1 to nops(a) do sum2 := sum2+mobius(a[h])*2^(m/a[h]):end do:sum3 := sum3+sum2/m:end do:s[n] := sum3:end do:q := seq(s[j], j=1..113);
MATHEMATICA
a[n_] := Sum[1/m DivisorSum[m, MoebiusMu[#]*2^(m/#)&], {m, 1, n}]; Array[a, 34] (* Jean-François Alcover, Dec 07 2015 *)
f[n_] := DivisorSum[n, MoebiusMu[#] * 2^(n/#) &] / n; Accumulate[Array[f, 30]] (* Amiram Eldar, Aug 24 2023 *)
PROG
(PARI) a(n)=sum(m=1, n, 1/m* sumdiv(m, d, moebius(d)*2^(m/d) ) ); /* Joerg Arndt, Jul 04 2011 */
CROSSREFS
Partial sums of A001037.
Equals A001036 + 1.
Column k=2 of A143328. - Alois P. Heinz, Jul 20 2013
Sequence in context: A191794 A191388 A194850 * A182024 A316474 A086661
KEYWORD
nonn,easy
AUTHOR
Gary L Mullen (mullen(AT)math.psu.edu), Jul 04 2001
EXTENSIONS
More terms from Sascha Kurz, Mar 25 2002
STATUS
approved