login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002730
Number of equivalence classes of binary sequences of primitive period n.
(Formerly M0114 N0044)
4
2, 1, 2, 3, 4, 8, 8, 18, 18, 38, 28, 142, 72, 234, 360, 669, 520, 2606, 1608, 7338, 8856, 19370, 16768, 94308, 67556, 216200, 277512, 815310, 662368, 4499852, 2311468, 8465496, 13045076, 31592762, 40937592, 159769394, 103197488, 401912086
OFFSET
1,1
COMMENTS
The number of equivalence classes of primitive sequences of period p, taking values in a set with b elements, is given by: N'(p) = sum_{d|p} mobius(p/d)*N(d) where N denotes the number of equivalence classes in the set of all sequences with period p, taking b values (see A002729). - Pab Ter (pabrlos2(AT)yahoo.com), Oct 22 2005
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. C. Titsworth, Equivalence classes of periodic sequences, Illinois J. Math., 8 (1964), 266-270.
FORMULA
Reference gives formula.
MAPLE
with(numtheory): E:=proc(k, L) if(L=1) then RETURN(1) else RETURN(order(k, L)) fi end; M:=proc(k, L) local s, EkL: EkL:=E(k, L): if(k>1) then s:=(k^EkL-1)/(k-1): RETURN(L*EkL/igcd(L, s)) else RETURN(L*EkL/igcd(L, EkL)) fi end; C:=proc(k, t, p) local u: RETURN(add(M(k, p/igcd(p, u*(k-1)+t))^(-1), u=0..p-1)) :end; N:=proc(p) options remember: local s, t, k: if(p=1) then RETURN(2) fi: s:=0: for t from 0 to p-1 do for k from 1 to p-1 do if igcd(p, k)=1 then s:=s+2^C(k, t, p) fi od od: RETURN(s/(p*phi(p))):end; Nprimitive:=proc(p) options remember: local d: RETURN(add(mobius(p/d)*N(d), d=divisors(p))): end; seq(Nprimitive(p), p=1..51); (Pab Ter)
MATHEMATICA
max = 38; m[k_, n_] := (s = 1; Do[ If[ Mod[s, n] == 0, Return[e], s = s + k^e ] , {e, 1, max}]); c[k_, t_, n_] := Sum[ m[k, n/GCD[n, u*(k-1) + t]]^(-1), {u, 0, n-1}]; (* b = A002729 *) b[n_] := b[n] = (s = 0; Do[ If[ GCD[n, k] == 1 , s = s + 2^c[k, t, n]] , {k, 1, n-1}, {t, 0, n-1}]; s / (n*EulerPhi[n]) ); b[0] = 1; b[1] = 2; a[n_] := Sum[ MoebiusMu[n/d]*b[d], {d, Divisors[n]}]; Table[a[n], {n, 1, max}] (* Jean-François Alcover, Dec 06 2011, after Maple *)
CROSSREFS
Cf. A002729.
Sequence in context: A350404 A325841 A076480 * A081664 A224926 A117673
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 22 2005
STATUS
approved