login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of equivalence classes of binary sequences of primitive period n.
(Formerly M0114 N0044)
4

%I M0114 N0044 #27 Jan 29 2022 01:02:47

%S 2,1,2,3,4,8,8,18,18,38,28,142,72,234,360,669,520,2606,1608,7338,8856,

%T 19370,16768,94308,67556,216200,277512,815310,662368,4499852,2311468,

%U 8465496,13045076,31592762,40937592,159769394,103197488,401912086

%N Number of equivalence classes of binary sequences of primitive period n.

%C The number of equivalence classes of primitive sequences of period p, taking values in a set with b elements, is given by: N'(p) = sum_{d|p} mobius(p/d)*N(d) where N denotes the number of equivalence classes in the set of all sequences with period p, taking b values (see A002729). - Pab Ter (pabrlos2(AT)yahoo.com), Oct 22 2005

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D R. C. Titsworth, Equivalence classes of periodic sequences, Illinois J. Math., 8 (1964), 266-270.

%H Vincenzo Librandi, <a href="/A002730/b002730.txt">Table of n, a(n) for n = 1..50</a>

%H <a href="/index/Lu#Lyndon">Index entries for sequences related to Lyndon words</a>

%F Reference gives formula.

%p with(numtheory): E:=proc(k,L) if(L=1) then RETURN(1) else RETURN(order(k,L)) fi end; M:=proc(k,L) local s,EkL: EkL:=E(k,L): if(k>1) then s:=(k^EkL-1)/(k-1): RETURN(L*EkL/igcd(L,s)) else RETURN(L*EkL/igcd(L,EkL)) fi end; C:=proc(k,t,p) local u: RETURN(add(M(k,p/igcd(p,u*(k-1)+t))^(-1),u=0..p-1)) :end; N:=proc(p) options remember: local s,t,k: if(p=1) then RETURN(2) fi: s:=0: for t from 0 to p-1 do for k from 1 to p-1 do if igcd(p,k)=1 then s:=s+2^C(k,t,p) fi od od: RETURN(s/(p*phi(p))):end; Nprimitive:=proc(p) options remember: local d: RETURN(add(mobius(p/d)*N(d),d=divisors(p))): end; seq(Nprimitive(p),p=1..51); (Pab Ter)

%t max = 38; m[k_, n_] := (s = 1; Do[ If[ Mod[s, n] == 0, Return[e], s = s + k^e ] , {e, 1, max}]); c[k_, t_, n_] := Sum[ m[k, n/GCD[n, u*(k-1) + t]]^(-1), {u, 0, n-1}]; (* b = A002729 *) b[n_] := b[n] = (s = 0; Do[ If[ GCD[n, k] == 1 , s = s + 2^c[k, t, n]] , {k, 1, n-1}, {t, 0, n-1}]; s / (n*EulerPhi[n]) ); b[0] = 1; b[1] = 2; a[n_] := Sum[ MoebiusMu[n/d]*b[d], {d, Divisors[n]}]; Table[a[n], {n, 1, max}] (* _Jean-François Alcover_, Dec 06 2011, after Maple *)

%Y Cf. A002729.

%K nonn,easy,nice

%O 1,1

%A _N. J. A. Sloane_

%E More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 22 2005