login
A121710
The smallest prime of the form (prime(n+1)^k + prime(n+2)^k)/2 for positive integer k.
2
17, 37, 8521, 21601, 229, 106921, 205081, 289278699121, 815401, 1398841, 8274567108488469403564696641244659777685186165444353190460129729940809291805549571887038803603334751361, 3122281, 2029
OFFSET
1,1
COMMENTS
These numbers are all of the form 4n+1.
k needs to be a power of two. The sequence of the associated k is 2, 2, 4, 4, 2, 4, 4, 8, 4, 4, 64, 4, 2, 0, 32, 4, 4, 4, 0, 0, 0, 8, 0, 0, 8, 4, 8, 4, 2, 4, 0, 32, 0, 2, 8, 2, ... where 0 is inserted if a(n) does not appear to exist. - Robert G. Wilson v, Aug 02 2018
It seems likely that a(14) does not exist. No k <= 2^15 works. - Don Reble and Robert Israel, Aug 02 2018
MAPLE
A121710 := proc(n)
local p1, p2, k, a ;
p1 := ithprime(n+1) ;
p2 := nextprime(p1) ;
for k from 1 do
a := (p1^k+p2^k)/2 ;
if type(a, 'integer') and isprime(a) then
return a;
end if;
end do:
end proc:
for n from 1 do
printf("%d %d\n", n, A121710(n)) ;
end do: # R. J. Mathar, Aug 02 2018
PROG
(PARI) g(n, a, b) = for(x=1, n, y=(a^x+b^x)/2; if(ispseudoprime(y), print(a", "b", "x", "y)))
CROSSREFS
Sequence in context: A093343 A153685 A208292 * A051779 A139579 A293206
KEYWORD
nonn
AUTHOR
Cino Hilliard, Sep 10 2006
EXTENSIONS
Name and Data corrected by Robert Israel, Aug 02 2018
STATUS
approved