|
|
A121708
|
|
Numerator of Sum/Product of first n Fibonacci numbers A000045[n].
|
|
1
|
|
|
1, 2, 2, 7, 2, 1, 11, 3, 11, 1, 29, 47, 29, 1, 19, 41, 19, 1, 199, 23, 199, 1, 521, 281, 521, 1, 31, 2207, 31, 1, 3571, 107, 3571, 1, 9349, 2161, 9349, 1, 211, 13201, 211, 1, 64079, 1103, 64079, 1, 15251, 90481, 15251, 1, 5779, 14503, 5779, 1, 1149851, 2521
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(1) = 1 and a(4k+2) = 1 for k>0.
For k >1 a(4k-1) = a(4k+1) = A072183(2k+1) = A061447(2k+1) Primitive part of Lucas(n).
|
|
LINKS
|
Table of n, a(n) for n=1..56.
|
|
FORMULA
|
a(n) = numerator( sum(k=1..n, Fibonacci(k)) / prod(k=1..n, Fibonacci(k)) ).
|
|
MATHEMATICA
|
Table[Numerator[Sum[Fibonacci[k], {k, 1, n}]/Product[Fibonacci[k], {k, 1, n}]], {n, 1, 100}]
With[{fibs=Fibonacci[Range[60]]}, Numerator[Accumulate[fibs]/Rest[ FoldList[ Times, 1, fibs]]]] (* This is significantly faster than the first program above *) (* Harvey P. Dale, Aug 19 2012 *)
|
|
CROSSREFS
|
Cf. A000045, A000032, A079451, A001578, A096362, A058036, A121709, A090585.
Cf. A061447, A072183.
Sequence in context: A340180 A063706 A110779 * A286370 A138069 A208475
Adjacent sequences: A121705 A121706 A121707 * A121709 A121710 A121711
|
|
KEYWORD
|
frac,nonn
|
|
AUTHOR
|
Alexander Adamchuk, Aug 16 2006, Sep 21 2006
|
|
STATUS
|
approved
|
|
|
|