login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121706
a(n) = Sum_{k=1..n-1} k^n.
9
0, 1, 9, 98, 1300, 20515, 376761, 7907396, 186884496, 4914341925, 142364319625, 4505856912854, 154718778284148, 5729082486784839, 227584583172284625, 9654782997596059912, 435659030617933827136, 20836030169620907691465
OFFSET
1,3
COMMENTS
n^3 divides a(n) for n in A121707.
It appears that p^(3k-1) divides a(p^k) for all integer k > 1 and prime p > 2:
for prime p > 2, p^2 divides a(p), p^5 divides a(p^2) and p^8 divides a(p^3).
Additionally, p^3 divides a(3p) for prime p > 2.
For prime p > 3, p divides a(p+1) and p^3 divides a(2p+1);
for prime p > 5, p divides a(3p+1) and p^3 divides a(4p+1);
for prime p > 7, p divides a(5p+1) and p^3 divides a(6p+1):
It appears that p divides a((2k+1)p+1) for integer k >= 0 and prime p > 2k+3, and p^3 divides a(2kp+1) for integer k > 0 and prime p > 2k+2.
p divides a((p+1)/2) for primes in A002145: primes of the form 4n+3, n >= 1.
p^2 divides a((p+1)/2) for primes in A007522: primes of the form 8n+7, n >= 0.
n*(2*n+1) divides a(2*n+1) for n >= 1. - Franz Vrabec, Dec 20 2020
LINKS
FORMULA
a(n) = Sum(k^n, k=1..n) - n^n = A031971(n) - A000312(n) for n > 1.
a(n) = zeta(-n) - zeta(-n, n).
MAPLE
A121706 := proc(n)
(bernoulli(n+1, n)-bernoulli(n+1))/(n+1) ;
end proc: # R. J. Mathar, May 10 2013
MATHEMATICA
Table[Sum[k^n, {k, 1, n-1}], {n, 1, 35}]
PROG
(PARI) a(n)=sum(k=1, n-1, k^n) \\ Charles R Greathouse IV, May 09 2013
(PARI) a(n)=subst(sumformal('x^n), 'x, n-1) \\ Charles R Greathouse IV, May 09 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Aug 16 2006
EXTENSIONS
Edited by M. F. Hasler, Jul 22 2019
STATUS
approved