login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139579
a(n) = 2*n^2 + 15*n.
7
0, 17, 38, 63, 92, 125, 162, 203, 248, 297, 350, 407, 468, 533, 602, 675, 752, 833, 918, 1007, 1100, 1197, 1298, 1403, 1512, 1625, 1742, 1863, 1988, 2117, 2250, 2387, 2528, 2673, 2822, 2975, 3132, 3293, 3458, 3627, 3800, 3977, 4158, 4343, 4532, 4725, 4922, 5123, 5328, 5537
OFFSET
0,2
FORMULA
a(n) = a(n-1) + 4*n + 13; a(0) = 0. - Vincenzo Librandi, Nov 24 2010
From Stefano Spezia, Oct 21 2023: (Start)
O.g.f.: x*(17 - 13*x)/(1 - x)^3.
E.g.f.: exp(x)*x*(17 + 2*x). (End)
From Amiram Eldar, Nov 10 2023: (Start)
Sum_{n>=1} 1/a(n) = 182144/675675 - 2*log(2)/15.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/15 - Pi/30 + 67952/675675. (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {0, 17, 38}, 50] (* Stefano Spezia, Oct 21 2023 *)
PROG
(PARI) a(n)=2*n^2+15*n \\ Charles R Greathouse IV, Jun 17 2017
KEYWORD
easy,nonn
AUTHOR
Omar E. Pol, May 19 2008
STATUS
approved