login
A339087
Number of compositions (ordered partitions) of n into distinct parts congruent to 4 mod 5.
3
1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 2, 1, 0, 0, 0, 4, 1, 0, 0, 6, 4, 1, 0, 0, 6, 6, 1, 0, 0, 12, 6, 1, 0, 0, 18, 8, 1, 0, 24, 24, 8, 1, 0, 24, 30, 10, 1, 0, 48, 42, 10, 1, 0, 72, 48, 12, 1, 0, 120, 60, 12, 1, 120, 144, 72, 14, 1, 120, 216, 84, 14, 1, 240
OFFSET
0,14
FORMULA
G.f.: Sum_{k>=0} k! * x^(k*(5*k + 3)/2) / Product_{j=1..k} (1 - x^(5*j)).
EXAMPLE
a(27) = 6 because we have [14, 9, 4], [14, 4, 9], [9, 14, 4], [9, 4, 14], [4, 14, 9] and [4, 9, 14].
MATHEMATICA
nmax = 80; CoefficientList[Series[Sum[k! x^(k (5 k + 3)/2)/Product[1 - x^(5 j), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 23 2020
STATUS
approved