login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220415
Table T(n,k)= floor(n/k)+ floor(k/n), n,k >0 read by antidiagonals.
3
2, 2, 2, 3, 2, 3, 4, 1, 1, 4, 5, 2, 2, 2, 5, 6, 2, 1, 1, 2, 6, 7, 3, 1, 2, 1, 3, 7, 8, 3, 2, 1, 1, 2, 3, 8, 9, 4, 2, 1, 2, 1, 2, 4, 9, 10, 4, 2, 1, 1, 1, 1, 2, 4, 10, 11, 5, 3, 2, 1, 2, 1, 2, 3, 5, 11
OFFSET
1,1
LINKS
Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
FORMULA
a(n) = floor(A002260(n)/A004736(n))+floor(A004736(n)/A002260(n)) or
a(n) = floor((n-t*(t+1)/2)/((t*t+3*t+4)/2-n)) + floor(((t*t+3*t+4)/2-n)/(n-t*(t+1)/2)), where t=floor((-1+sqrt(8*n-7))/2).
EXAMPLE
The start of the sequence as triangle array read by rows:
2;
2,2;
3,2,3;
4,1,1,4;
5,2,2,2,5;
6,2,1,1,2,6;
...
PROG
(Python)
t=int((math.sqrt(8*n-7) - 1)/ 2)
a = n-t*(t+1)/2
b= (t*t+3*t+4)/2-n
m= int(a/b)+int(b/a)
CROSSREFS
Sequence in context: A194344 A128435 A369219 * A330861 A286565 A219354
KEYWORD
nonn,tabl
AUTHOR
Boris Putievskiy, Dec 21 2012
STATUS
approved