login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Table T(n,k)= floor(n/k)+ floor(k/n), n,k >0 read by antidiagonals.
3

%I #19 Feb 16 2022 18:24:45

%S 2,2,2,3,2,3,4,1,1,4,5,2,2,2,5,6,2,1,1,2,6,7,3,1,2,1,3,7,8,3,2,1,1,2,

%T 3,8,9,4,2,1,2,1,2,4,9,10,4,2,1,1,1,1,2,4,10,11,5,3,2,1,2,1,2,3,5,11

%N Table T(n,k)= floor(n/k)+ floor(k/n), n,k >0 read by antidiagonals.

%H Boris Putievskiy, <a href="/A220415/b220415.txt">Rows n = 1..140 of triangle, flattened</a>

%H Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations Integer Sequences And Pairing Functions</a>, arXiv:1212.2732 [math.CO], 2012.

%F a(n) = floor(A002260(n)/A004736(n))+floor(A004736(n)/A002260(n)) or

%F a(n) = floor((n-t*(t+1)/2)/((t*t+3*t+4)/2-n)) + floor(((t*t+3*t+4)/2-n)/(n-t*(t+1)/2)), where t=floor((-1+sqrt(8*n-7))/2).

%e The start of the sequence as triangle array read by rows:

%e 2;

%e 2,2;

%e 3,2,3;

%e 4,1,1,4;

%e 5,2,2,2,5;

%e 6,2,1,1,2,6;

%e ...

%o (Python)

%o t=int((math.sqrt(8*n-7) - 1)/ 2)

%o a = n-t*(t+1)/2

%o b= (t*t+3*t+4)/2-n

%o m= int(a/b)+int(b/a)

%Y Cf. A002260, A004736.

%K nonn,tabl

%O 1,1

%A _Boris Putievskiy_, Dec 21 2012