login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A220416
Table T(n,k) = ((n+k-1)*(n+k-2)/2+n)^n, n,k >0 read by antidiagonals.
3
1, 2, 9, 4, 25, 216, 7, 64, 729, 10000, 11, 144, 2197, 38416, 759375, 16, 289, 5832, 130321, 3200000, 85766121, 22, 529, 13824, 390625, 11881376, 387420489, 13492928512, 29, 900, 29791, 1048576, 39135393, 1544804416, 64339296875, 2821109907456
OFFSET
1,2
COMMENTS
The first column is A000124.
LINKS
Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
FORMULA
As a linear array, the sequence is a(n) = n^A002260(n) or
a(n) = n^(n-t(t+1)/2), where t=floor[(-1+sqrt(8*n-7))/2].
EXAMPLE
The start of the sequence as triangle array is:
1;
2,9;
4,25,216;
7,64,729,10000;
11, 144, 2197, 38416, 759375;
...
PROG
(Python)
t=int((math.sqrt(8*n-7) - 1)/ 2)
m=n**(n-t*(t+1)/2)
CROSSREFS
Sequence in context: A318680 A171560 A302451 * A054789 A002508 A353242
KEYWORD
nonn,tabl
AUTHOR
Boris Putievskiy, Dec 14 2012
STATUS
approved