login
A137614
Triangle read by rows: A000012 * A047812 as infinite lower triangular matrices.
1
1, 2, 1, 3, 4, 1, 4, 9, 8, 1, 5, 18, 28, 12, 1, 6, 31, 76, 63, 19, 1, 7, 51, 176, 232, 131, 27, 1, 8, 79, 370, 693, 617, 248, 39, 1, 9, 119, 722, 1821, 2284, 1458, 450, 53, 1, 10, 173, 1337, 4338, 7243, 6553, 3211, 773, 74, 1
OFFSET
0,2
COMMENTS
Row sums = A014138: (1, 3, 8, 22, 64, 196, 625, ...).
From Petros Hadjicostas, Jun 01 2020: (Start)
We prove the claim above. From Guy (1992, 1993), we know that A000108(n) = Sum_{k=0..n-1} A047812(k) (the row sums of Parker's triangle are Catalan numbers).
We then have Sum_{k=0..n-1} T(n,k) = Sum_{k=0..n-1} Sum_{s=k+1..n} A047812(s,k) = Sum_{s=1..n} Sum_{k=0..s-1} A047812(s,k) = Sum_{s=1..n} A000108(s) = A014138(n) because A014138 contains partial sums of the Catalan numbers. (End)
LINKS
R. K. Guy, Parker's permutation problem involves the Catalan numbers, preprint, 1992. (Annotated scanned copy)
R. K. Guy, Parker's permutation problem involves the Catalan numbers, Amer. Math. Monthly 100 (1993), 287-289.
FORMULA
T(n,k) = Sum_{s=k+1..n} A047812(s,k) for n >= 1 and 0 <= k <= n-1. - Petros Hadjicostas, Jun 01 2020
EXAMPLE
Triangle T(n,k) (with rows n >= 1 and columns k = 0..n-1) begins:
1;
2, 1;
3, 4, 1;
4, 9, 8, 1;
5, 18, 28, 12, 1;
6, 31, 76, 63, 19, 1;
7, 51, 176, 232, 131, 27, 1;
...
PROG
(PARI) A(n, k) = polcoeff(prod(j=0, n-1, (1-q^(2*n-j))/(1-q^(j+1)) ), k*(n+1) );
T(n, k) = sum(s=k+1, n, A(s, k));
vector(15, n, vector(n, k, T(n, k-1))) \\ Petros Hadjicostas, Jun 01 2020
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Jan 30 2008
STATUS
approved