login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144823
Square array A(n,k), n>=1, k>=1, read by antidiagonals, with A(1,k)=1 and sequence a_k of column k shifts left when Dirichlet convolution with a_k (DC:(b,a_k)->a) applied k times.
10
1, 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 9, 9, 1, 1, 5, 16, 30, 18, 1, 1, 6, 25, 70, 90, 40, 1, 1, 7, 36, 135, 280, 288, 80, 1, 1, 8, 49, 231, 675, 1168, 864, 168, 1, 1, 9, 64, 364, 1386, 3475, 4672, 2647, 340, 1, 1, 10, 81, 540, 2548, 8496, 17375, 18884, 7968, 698, 1, 1, 11, 100
OFFSET
1,6
LINKS
N. J. A. Sloane, Transforms
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
2, 3, 4, 5, 6, 7, 8, 9, ...
4, 9, 16, 25, 36, 49, 64, 81, ...
9, 30, 70, 135, 231, 364, 540, 765, ...
18, 90, 280, 675, 1386, 2548, 4320, 6885, ...
40, 288, 1168, 3475, 8496, 18130, 35008, 62613, ...
80, 864, 4672, 17375, 50976, 126910, 280064, 563517, ...
MAPLE
with(numtheory): dc:= proc(b, c) proc(n) option remember; add(b(d) *c(n/d), d=`if`(n<0, {}, divisors(n))) end end: A:= proc(n, k) local a, b, t; b[1]:= dc(a, a); for t from 2 to k do b[t]:= dc(b[t-1], a) od: a:= n-> `if`(n=1, 1, b[k](n-1)); a(n) end: seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
MATHEMATICA
dc[b_, c_] := Module[{proc}, proc[n_] := proc[n] = Sum [b[d] *c[n/d], {d, If[n < 0, {}, Divisors[n]]}]; proc]; A [n_, k_] := Module[{a, b, t}, b[1] = dc[a, a]; For[t = 2, t <= k, t++, b[t] = dc[b[t-1], a]]; a = Function[m, If[m == 1, 1, b[k][m-1]]]; a[n]]; Table[Table [A[n, 1+d-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Dec 20 2013, translated from Maple *)
CROSSREFS
Rows 1+2, 3-4 give: A000012, A000027, A000290, A002414.
Sequence in context: A138028 A009999 A322268 * A098446 A098447 A202784
KEYWORD
eigen,nonn,tabl
AUTHOR
Alois P. Heinz, Sep 21 2008
STATUS
approved