login
A144824
Triangle read by rows, A054533 * A127648 (matrix product).
3
1, -1, 2, -1, -2, 6, 0, -4, 0, 8, -1, -2, -3, -4, 20, 1, -2, -6, -4, 5, 12, -1, -2, -3, -4, -5, -6, 42, 0, 0, 0, -16, 0, 0, 0, 32, 0, 0, -9, 0, 0, -18, 0, 0, 54, 1, -2, 3, -4, -20, -6, 7, -8, 9, 40, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, 110
OFFSET
1,3
COMMENTS
Row sums = A023896: (1, 1, 3, 4, 10, 16, 21, ...).
Right border = A002618: (1, 2, 6, 8, 20, 12, ...).
Left border = mu(n) = A008683 (n).
LINKS
FORMULA
Triangle read by rows, A054533 * A127648 (matrix product). The operation is equivalent to taking termwise products of row A054533 terms and the natural numbers.
T(n, k) = k * Sum_{d|gcd(n,k)} d * mu(n/d) for n >= 1 and 1 <= k <= n. - Petros Hadjicostas, Jul 28 2019
a(n) = A002260(n)*A054533(n). - Jinyuan Wang, Jul 29 2019
EXAMPLE
Triangle A054533 starts as follows:
1;
-1, 1;
-1, -1, 2;
0, -2, 0, 2;
-1, -1, -1, -1, 4;
1, -1, -2, -1, 1, 2;
...
The first few rows of triangle A144824 are as follows:
1;
-1, 2;
-1, -2, 6;
0, -4, 0, 8;
-1, -2, -3, -4, 20;
1, -2, -6, -4, 5, 12;
-1, -2, -3, -4, -5, -6, 42;
...
CROSSREFS
KEYWORD
tabl,sign
AUTHOR
Gary W. Adamson, Sep 21 2008
STATUS
approved