login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098447
Triangle T, read by rows, such that diagonal n equals column 0 of T^(n+1), the (n+1)-th matrix power of T.
1
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 9, 9, 1, 1, 5, 16, 32, 24, 1, 1, 6, 25, 78, 150, 79, 1, 1, 7, 36, 155, 532, 1018, 340, 1, 1, 8, 49, 271, 1395, 5802, 10996, 2090, 1, 1, 9, 64, 434, 3036, 21343, 116658, 212434, 20613, 1, 1, 10, 81, 652, 5824, 60209, 661325, 5072504
OFFSET
0,5
COMMENTS
Row sums form A098448.
FORMULA
T(n, k) = Sum_{i=0..k} T(k, i)*T(n-k+i-1, i), for 0<k<n, else T(0, n)=T(n, n)=1.
EXAMPLE
T(7,3) = T(3,0)*T(3,0) + T(3,1)*T(4,1) + T(3,2)*T(5,2) + T(3,3)*T(6,3)
= 1*1 + 3*4 + 4*16 + 1*78 = 155.
Rows of T begin:
[1],
[1,1],
[1,2,1],
[1,3,4,1],
[1,4,9,9,1],
[1,5,16,32,24,1],
[1,6,25,78,150,79,1],
[1,7,36,155,532,1018,340,1],
[1,8,49,271,1395,5802,10996,2090,1],
[1,9,64,434,3036,21343,116658,212434,20613,1],...
Matrix square T^2 begins:
[1],
[2,1],
[4,4,1],
[9,14,8,1],
[24,53,54,18,1],
[79,234,376,280,48,1],
[340,1291,2976,4034,2196,158,1],...
where column 0 is {1,2,4,9,24,79,340,...} and forms diagonal 1 of T.
Matrix cube T^3 begins:
[1],
[3,1],
[9,6,1],
[32,33,12,1],
[150,219,135,27,1],
[1018,2023,1944,744,72,1],...
where column 0 is {1,3,9,32,150,1018,...} and forms diagonal 2 of T.
PROG
(PARI) T(n, k)=if(n<k || k<0, 0, if(n==k || k==0, 1, sum(i=0, k, T(k, i)*T(n-k+i-1, i)); ))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Sep 07 2004
STATUS
approved