login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006464
Continued fraction for Sum_{n>=0} 1/4^(2^n).
(Formerly M2512)
5
0, 3, 6, 4, 4, 2, 4, 6, 4, 2, 6, 4, 2, 4, 4, 6, 4, 2, 6, 4, 4, 2, 4, 6, 2, 4, 6, 4, 2, 4, 4, 6, 4, 2, 6, 4, 4, 2, 4, 6, 4, 2, 6, 4, 2, 4, 4, 6, 2, 4, 6, 4, 4, 2, 4, 6, 2, 4, 6, 4, 2, 4, 4, 6, 4, 2, 6, 4, 4, 2, 4, 6, 4, 2, 6, 4, 2, 4, 4, 6, 4, 2, 6, 4, 4, 2, 4, 6, 2, 4, 6, 4, 2, 4, 4, 6, 2, 4, 6, 4, 4, 2, 4, 6, 4
OFFSET
0,2
COMMENTS
a(n)=A004200(n) if n=0; A004200(n)+1 if n>0 (according to case u=3, b=1 of Theorem 5 (of the reference) which states that: if B(u,infinity) = Sum_{n>=0} 1/u^(2^n) = [a0, a1, a2, ...] then B(u + b,infinity) = [a0, a1+b, a2+b, a3+b,... ] (u >= 3, b >= 0)).
The sum is equal to 0.316421509021893143708079...= A078585.
After computing the first 10^5 terms and dropping the first two (0 & 3), only the numbers 2, 4 & 6 occur. Further I found no two 0's in a row and no three 2's or three 1's in a row. - Robert G. Wilson v, Dec 01 2002
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
EXAMPLE
0.316421509021893143708079737... = 0 + 1/(3 + 1/(6 + 1/(4 + 1/(4 + ...)))). - Harry J. Smith, May 11 2009
MAPLE
u := 4: v := 7: Buv := [u, 1, [0, u-1, u+1]]: for k from 2 to v do n := nops(Buv[3]): Buv := [u, Buv[2]+1, [seq(Buv[3][i], i=1..n-1), Buv[3][n]+1, Buv[3][n]-1, seq(Buv[3][n-i], i=1..n-2)]] od:seq(Buv[3][i], i=1..2^v); # first 2^v terms of A006464, Antonio G. Astudillo (aft_astudillo(AT)hotmail.com), Dec 02 2002
MATHEMATICA
ContinuedFraction[ N[ Sum[1/4^(2^n), {n, 0, Infinity}], 1000]]
PROG
(PARI) { allocatemem(932245000); default(realprecision, 25000); x=suminf(n=0, 1/4^(2^n)); x=contfrac(x); for (n=1, 20001, write("b006464.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 11 2009
CROSSREFS
Sequence in context: A105559 A090038 A308291 * A233825 A351124 A159354
KEYWORD
nonn,cofr
EXTENSIONS
Better description and more terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 19 2001
STATUS
approved