|
|
|
|
1, 3, 6, 11, 18, 26, 36, 48, 61, 79, 99, 126, 154, 187, 224, 266, 311, 358, 413, 471, 531, 593, 656, 721, 788, 861, 936, 1014, 1094, 1179, 1267, 1357, 1449, 1551, 1654, 1759, 1871, 1986, 2104, 2224, 2349, 2477, 2607, 2739, 2874, 3014, 3156, 3306, 3459, 3616
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Table of n, a(n) for n=1..50.
|
|
FORMULA
|
a(n) = SUM[i=1..n] A001912(i) = SUM[j=1..n] {Numbers i_j such that 4*(i_j)^2 + 1 is prime}.
|
|
EXAMPLE
|
a(17) = 1 + 2 + 3 + 5 + 7 + 8 + 10 + 12 + 13 + 18 + 20 + 27 + 28 + 33 + 37 + 42 + 45 = 311 which is itself a prime. The primes in this sequence begin: 3, 11, 61, 79, 311, 593.
|
|
MAPLE
|
A001912 := proc(n) option remember ; local a ; if n <= 3 then RETURN(n); else for a from A001912(n-1)+1 do if isprime(4*a^2+1) then RETURN(a) ; fi ; od: fi ; end: A140126 := proc(n) local i ; add( A001912(i), i=1..n) ; end: seq(A140126(n), n=1..80) ; # R. J. Mathar, Jun 12 2008
|
|
MATHEMATICA
|
Accumulate[Select[Range[200], PrimeQ[4#^2+1]&]] (* Harvey P. Dale, Jan 29 2017 *)
|
|
CROSSREFS
|
Cf. A000040, A001912, A002496, A005574, A062325, A090693.
Sequence in context: A024667 A025210 A340648 * A140235 A224214 A010000
Adjacent sequences: A140123 A140124 A140125 * A140127 A140128 A140129
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Jonathan Vos Post, Jun 04 2008
|
|
EXTENSIONS
|
More terms from R. J. Mathar, Jun 12 2008
|
|
STATUS
|
approved
|
|
|
|