login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140126
Partial sums of A001912.
1
1, 3, 6, 11, 18, 26, 36, 48, 61, 79, 99, 126, 154, 187, 224, 266, 311, 358, 413, 471, 531, 593, 656, 721, 788, 861, 936, 1014, 1094, 1179, 1267, 1357, 1449, 1551, 1654, 1759, 1871, 1986, 2104, 2224, 2349, 2477, 2607, 2739, 2874, 3014, 3156, 3306, 3459, 3616
OFFSET
1,2
FORMULA
a(n) = SUM[i=1..n] A001912(i) = SUM[j=1..n] {Numbers i_j such that 4*(i_j)^2 + 1 is prime}.
EXAMPLE
a(17) = 1 + 2 + 3 + 5 + 7 + 8 + 10 + 12 + 13 + 18 + 20 + 27 + 28 + 33 + 37 + 42 + 45 = 311 which is itself a prime. The primes in this sequence begin: 3, 11, 61, 79, 311, 593.
MAPLE
A001912 := proc(n) option remember ; local a ; if n <= 3 then RETURN(n); else for a from A001912(n-1)+1 do if isprime(4*a^2+1) then RETURN(a) ; fi ; od: fi ; end: A140126 := proc(n) local i ; add( A001912(i), i=1..n) ; end: seq(A140126(n), n=1..80) ; # R. J. Mathar, Jun 12 2008
MATHEMATICA
Accumulate[Select[Range[200], PrimeQ[4#^2+1]&]] (* Harvey P. Dale, Jan 29 2017 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Jun 04 2008
EXTENSIONS
More terms from R. J. Mathar, Jun 12 2008
STATUS
approved