login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340648
a(n) is the maximum number of nonzero entries in an n X n sign-restricted matrix.
0
0, 1, 3, 6, 11, 18, 26, 35, 46, 59, 73, 88, 105, 124, 144, 165, 188, 213, 239, 266, 295, 326, 358, 391, 426, 463, 501, 540, 581, 624, 668, 713, 760, 809, 859, 910, 963, 1018, 1074, 1131, 1190, 1251, 1313, 1376, 1441, 1508, 1576, 1645, 1716, 1789, 1863, 1938, 2015
OFFSET
0,3
COMMENTS
A sign-restricted matrix is such that each partial column sum, starting from row 1, equals 0 or 1, and each partial row sum, starting from column 1, is nonnegative.
LINKS
Richard A. Brualdi and Geir Dahl, Sign-restricted matrices of 0's, 1's, and -1's, arXiv:2101.04150 [math.CO], 2021.
FORMULA
a(n) = (3*n^2-n)/4 if (n==0) or (n==3) (mod 4);
a(n) = (3*n^2-n+2)/4 if (n==1) or (n==2) (mod 4).
From Stefano Spezia, Jan 14 2021: (Start)
G.f.: x*(1 + x^2 + x^3)/((1 - x)^3*(1 + x^2)).
a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5) for n > 4. (End)
For n >= 4, a(n) = (A225231(n+1) + 1)/2 - 1. - Hugo Pfoertner, Jan 17 2021
MATHEMATICA
LinearRecurrence[{3, -4, 4, -3, 1}, {0, 1, 3, 6, 11}, 50] (* Amiram Eldar, Jan 14 2021 *)
PROG
(PARI) a(n) = my(x=n % 4); if ((x==0) || (x==3), (3*n^2-n)/4, (3*n^2-n+2)/4);
CROSSREFS
Cf. A225231.
Sequence in context: A363056 A373329 A025210 * A140126 A140235 A224214
KEYWORD
nonn,easy
AUTHOR
Michel Marcus, Jan 14 2021
STATUS
approved