OFFSET
0,3
COMMENTS
Also, number of n X n rational {0,1}-matrices with no zero rows or columns and with all rows distinct, up to permutation of rows.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..50
FORMULA
a(n) = Sum_{k=0..n} (-1)^k*binomial(n, k)*binomial(2^(n-k)-1, n).
a(n) = (1/n!)*Sum_{k=0..n} Stirling1(n+1, k+1)*(2^k-1)^n.
G.f.: Sum_{n>=0} log(1+(2^n-1)*x)^n/((1+(2^n-1)*x)*n!). - Paul D. Hanna and Vladeta Jovovic, Jan 16 2008
a(n) ~ 2^(n^2) / n!. - Vaclav Kotesovec, Jun 04 2022
Inverse binomial transform of A367916. - Gus Wiseman, Dec 19 2023
EXAMPLE
From Gus Wiseman, Dec 19 2023: (Start)
Number of ways to choose n nonempty sets with union {1..n}. For example, the a(3) = 32 covers are:
{1}{2}{3} {1}{2}{13} {1}{2}{123} {1}{12}{123} {12}{13}{123}
{1}{2}{23} {1}{3}{123} {1}{13}{123} {12}{23}{123}
{1}{3}{12} {1}{12}{13} {1}{23}{123} {13}{23}{123}
{1}{3}{23} {1}{12}{23} {2}{12}{123}
{2}{3}{12} {1}{13}{23} {2}{13}{123}
{2}{3}{13} {2}{3}{123} {2}{23}{123}
{2}{12}{13} {3}{12}{123}
{2}{12}{23} {3}{13}{123}
{2}{13}{23} {3}{23}{123}
{3}{12}{13} {12}{13}{23}
{3}{12}{23}
{3}{13}{23}
(End)
MATHEMATICA
Join[{1}, Table[Sum[StirlingS1[n+1, k+1]*(2^k - 1)^n, {k, 0, n}]/n!, {n, 1, 15}]] (* Vaclav Kotesovec, Jun 04 2022 *)
Table[Length[Select[Subsets[Rest[Subsets[Range[n]]], {n}], Union@@#==Range[n]&]], {n, 0, 4}] (* Gus Wiseman, Dec 19 2023 *)
PROG
(PARI) a(n) = sum(k=0, n, (-1)^k*binomial(n, k)*binomial(2^(n-k)-1, n)) \\ Andrew Howroyd, Jan 20 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, May 21 2000
STATUS
approved