login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323816
Number of set-systems covering n vertices with no singletons.
7
1, 0, 1, 12, 1993, 67098768, 144115187673233113, 1329227995784915871895000745158568460, 226156424291633194186662080095093570015284114833799899660370362545578585265
OFFSET
0,4
LINKS
FORMULA
Inverse binomial transform of A016031 shifted once to the left.
EXAMPLE
The a(3) = 12 set-systems:
{{1,2,3}}
{{1,2}, {1,3}}
{{1,2}, {2,3}}
{{1,3}, {2,3}}
{{1,2}, {1,2,3}}
{{1,3}, {1,2,3}}
{{2,3}, {1,2,3}}
{{1,2}, {1,3}, {2,3}}
{{1,2}, {1,3}, {1,2,3}}
{{1,2}, {2,3}, {1,2,3}}
{{1,3}, {2,3}, {1,2,3}}
{{1,2}, {1,3}, {2,3}, {1,2,3}}
MAPLE
a:= n-> add(2^(2^(n-j)-n+j-1)*binomial(n, j)*(-1)^j, j=0..n):
seq(a(n), n=0..8); # Alois P. Heinz, Jan 30 2019
MATHEMATICA
Table[Sum[(-1)^(n-k)*Binomial[n, k]*2^(2^k-k-1), {k, 0, n}], {n, 0, 8}]
PROG
(Magma)
[(&+[(-1)^(n-j)*Binomial(n, j)*2^(2^j -j-1): j in [0..n]]): n in [0..12]]; // G. C. Greubel, Oct 05 2022
(SageMath)
def A323816(n): return sum((-1)^j*binomial(n, j)*2^(2^(n-j) -n+j-1) for j in range(n+1))
[A323816(n) for n in range(12)] # G. C. Greubel, Oct 05 2022
CROSSREFS
Cf. A000295, A000371, A000612, A003465 (with singletons), A006129 (covers by pairs), A016031, A055154, A055621, A305001, A317795 (unlabeled case), A323817 (connected case).
Sequence in context: A011920 A323817 A263584 * A208252 A204622 A369336
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 30 2019
STATUS
approved