The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A011920 a(n) = b(n)*(b(n)+1) = b(n) + ... + c(n), where b(n) = A011916(n), c(n) = A011918(n). 2
 12, 1980, 378840, 73419192, 14241916260, 2762844014580, 535977297450672, 103976830083273840, 20170969020163148220, 3913064012542622257452, 759114247456742016195720, 147264250942490855924510760 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES Mario Velucchi "Seeing couples" in Recreational and Educational Computing, to appear 1997. LINKS Harvey P. Dale, Table of n, a(n) for n = 1..437 Index entries for linear recurrences with constant coefficients, signature (209,-2926,2926,-209,1). FORMULA From R. J. Mathar, Apr 15 2010: (Start) a(n) = +209*a(n-1) -2926*a(n-2) +2926*a(n-3) -209*a(n-4) +a(n-5). G.f.: -12*x*(1-44*x+11*x^2)/ ((x-1) * (x^2-14*x+1) * (x^2-194*x+1)). (End) MAPLE A011922 := proc(n) (2+sqrt(1+((((2+sqrt(3))^(2*n)-(2-sqrt(3))^(2*n))^2)/4)))/3 ; expand(%) ; simplify(%) ; end proc: A011916 := proc(n) ((A011922(n)-1)+sqrt(3*A011922(n)^2-4*A011922(n)+1))/2 ; end proc: A011920 := proc(n) A011916(n)*(A011916(n)+1) ; end proc: seq(A011920(n), n=1..20) ; # R. J. Mathar, Apr 15 2010 MATHEMATICA LinearRecurrence[{209, -2926, 2926, -209, 1}, {12, 1980, 378840, 73419192, 14241916260}, 20] (* Harvey P. Dale, Jan 01 2021 *) CROSSREFS Sequence in context: A167745 A326601 A265216 * A323817 A263584 A323816 Adjacent sequences: A011917 A011918 A011919 * A011921 A011922 A011923 KEYWORD nonn,easy,changed AUTHOR Mario Velucchi (mathchess(AT)velucchi.it) EXTENSIONS More terms from R. J. Mathar, Apr 15 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 16:55 EST 2024. Contains 370237 sequences. (Running on oeis4.)