login
A136506
a(n) = binomial(2^n + 2, n).
14
1, 4, 15, 120, 3060, 278256, 90858768, 105637584000, 436355999662176, 6431591598617108352, 340881559632021623909760, 65533747894341651530074060800, 46081376018330435634530315478453248
OFFSET
0,2
LINKS
FORMULA
G.f.: A(x) = Sum_{n>=0} (1 + 2^n*x)^2 * log(1 + 2^n*x)^n/n!.
a(n) ~ 2^(n^2) / n!. - Vaclav Kotesovec, Jul 02 2016
MAPLE
A136506:= n-> binomial(2^n+2, n); seq(A136506(n), n=0..20); # G. C. Greubel, Mar 14 2021
MATHEMATICA
Table[Binomial[2^n+2, n], {n, 0, 20}] (* Harvey P. Dale, Jun 20 2011 *)
PROG
(PARI) {a(n)=polcoeff(sum(i=0, n, (1+2^i*x +x*O(x^n))^2*log(1+2^i*x +x*O(x^n))^i/i!), n)}
(Sage) [binomial(2^n +2, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
(Magma) [Binomial(2^n +2, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
CROSSREFS
Sequences of the form binomial(2^n +p*n +q, n): A136556 (0,-1), A014070 (0,0), A136505 (0,1), this sequence (0,2), A060690 (1,-1), A132683 (1,0), A132684 (1,1), A132685 (2,0), A132686 (2,1), A132687 (3,-1), A132688 (3,0), A132689 (3,1).
Sequence in context: A354889 A197703 A352608 * A375994 A362499 A323564
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 01 2008
STATUS
approved