The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136509 G.f.: A(x) = Sum_{n>=0} (-1)^n * (1 -x -2^n*x^2)^(-1) * log(1 -x -2^n*x^2)^n / n!. 3
 1, 2, 6, 16, 50, 171, 697, 3416, 21126, 169105, 1794683, 25891713, 507686588, 13878639286, 518836271475, 27356839451662, 1968958300103603, 200935638262212462, 27892630019328034846, 5502857784211927305980 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..100 MATHEMATICA With[{m=30}, CoefficientList[Series[Sum[(-1)^j*Log[1-x-2^j*x^2]^j/(j!*(1-x -2^j*x^2)), {j, 0, m+2}], {x, 0, m}], x]] (* G. C. Greubel, Mar 15 2021 *) PROG (PARI) {a(n)=polcoeff(sum(i=0, n, (-1)^i*1/(1-x*(1+2^i*x +x*O(x^n)))*log(1-x-2^i*x^2 +x*O(x^n))^i/i!), n)} (Magma) m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (&+[(-1)^j*Log(1-x-2^j*x^2)^j/(Factorial(j)*(1 -x -2^j*x^2)) : j in [0..m+2]]) )); // G. C. Greubel, Mar 15 2021 (Sage) def A136509_list(prec): P. = PowerSeriesRing(QQ, prec) return P( sum((-1)^j*log(1-x -2^j*x^2)^j/(factorial(j)*(1 -x -2^j*x^2)) for j in (0..32)) ).list() A136509_list(30) # G. C. Greubel, Mar 15 2021 CROSSREFS Cf. A136507, A136508. Sequence in context: A369365 A013989 A002841 * A100664 A317094 A339844 Adjacent sequences: A136506 A136507 A136508 * A136510 A136511 A136512 KEYWORD nonn AUTHOR Paul D. Hanna, Jan 01 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 11:24 EDT 2024. Contains 376000 sequences. (Running on oeis4.)