login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A136509 G.f.: A(x) = Sum_{n>=0} (-1)^n * (1 -x -2^n*x^2)^(-1) * log(1 -x -2^n*x^2)^n / n!. 3
1, 2, 6, 16, 50, 171, 697, 3416, 21126, 169105, 1794683, 25891713, 507686588, 13878639286, 518836271475, 27356839451662, 1968958300103603, 200935638262212462, 27892630019328034846, 5502857784211927305980
(list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
MATHEMATICA
With[{m=30}, CoefficientList[Series[Sum[(-1)^j*Log[1-x-2^j*x^2]^j/(j!*(1-x -2^j*x^2)), {j, 0, m+2}], {x, 0, m}], x]] (* G. C. Greubel, Mar 15 2021 *)
PROG
(PARI) {a(n)=polcoeff(sum(i=0, n, (-1)^i*1/(1-x*(1+2^i*x +x*O(x^n)))*log(1-x-2^i*x^2 +x*O(x^n))^i/i!), n)}
(Magma)
m:=30; R<x>:=PowerSeriesRing(Rationals(), m);
Coefficients(R!( (&+[(-1)^j*Log(1-x-2^j*x^2)^j/(Factorial(j)*(1 -x -2^j*x^2)) : j in [0..m+2]]) )); // G. C. Greubel, Mar 15 2021
(Sage)
def A136509_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( sum((-1)^j*log(1-x -2^j*x^2)^j/(factorial(j)*(1 -x -2^j*x^2)) for j in (0..32)) ).list()
A136509_list(30) # G. C. Greubel, Mar 15 2021
CROSSREFS
Sequence in context: A369365 A013989 A002841 * A100664 A317094 A339844
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 01 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 11:24 EDT 2024. Contains 376000 sequences. (Running on oeis4.)