OFFSET
0,1
COMMENTS
For n > 2, a(n) is the number of join-endomorphisms for a nondistributive lattice of size n (see Theorem 3 in Quintero et al.).
LINKS
Stefano Spezia, Table of n, a(n) for n = 0..400
Santiago Quintero, Sergio RamÃrez, Camilo Rueda, and Frank Valencia, Counting and Computing Join- Endomorphisms in Lattices . [Research Report] LIX, Ecole polytechnique; INRIA Saclay - Ile-de-France. 2019. hal-02422624.
FORMULA
E.g.f.: exp(x/(1-x))/(1 - x) + exp(x)*(1 + 3*x + x^2).
a(n) ~ C*exp(2*sqrt(n)-n)*n^(n+1/4), where C = 1/sqrt(2*e). - Stefano Spezia, Jun 30 2021
MATHEMATICA
Table[(n+1)^2+n!*LaguerreL[n, -1], {n, 0, 21}]
PROG
(PARI) my(x='x + O('x^22)); Vec(serlaplace(exp(x/(1-x))/(1 - x) + exp(x)*(1 + 3*x + x^2)))
(PARI) a(n) = (n+1)^2 + n!*pollaguerre(n, 0, -1); \\ Michel Marcus, Feb 05 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Stefano Spezia, Jan 08 2020
STATUS
approved