The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A317094 a(n) = (n + 1)^2 + n!*L_n(-1), where L_n(x) is the Laguerre polynomial. 2
 2, 6, 16, 50, 234, 1582, 13376, 130986, 1441810, 17572214, 234662352, 3405357826, 53334454586, 896324308830, 16083557845504, 306827170866362, 6199668952527906, 132240988644216166, 2968971263911289360, 69974827707903049554, 1727194482044146637962, 44552237162692939114766 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS For n > 2, a(n) is the number of join-endomorphisms for a nondistributive lattice of size n (see Theorem 3 in Quintero et al.). LINKS Stefano Spezia, Table of n, a(n) for n = 0..400 Santiago Quintero, Sergio RamÃ­rez, Camilo Rueda, and Frank Valencia, Counting and Computing Join- Endomorphisms in Lattices . [Research Report] LIX, Ecole polytechnique; INRIA Saclay - Ile-de-France. 2019. hal-02422624. FORMULA E.g.f.: exp(x/(1-x))/(1 - x) + exp(x)*(1 + 3*x + x^2). a(n) = A000290(n+1) + A002720(n). a(n) ~ C*exp(2*sqrt(n)-n)*n^(n+1/4), where C = 1/sqrt(2*e). - Stefano Spezia, Jun 30 2021 MATHEMATICA Table[(n+1)^2+n!*LaguerreL[n, -1], {n, 0, 21}] PROG (PARI) my(x='x + O('x^22)); Vec(serlaplace(exp(x/(1-x))/(1 - x) + exp(x)*(1 + 3*x + x^2))) (PARI) a(n) = (n+1)^2 + n!*pollaguerre(n, 0, -1); \\ Michel Marcus, Feb 05 2021 CROSSREFS Cf. A000142 (n!), A000290, A002720, A274294, A274295. Sequence in context: A002841 A136509 A100664 * A339844 A258797 A214983 Adjacent sequences:  A317091 A317092 A317093 * A317095 A317096 A317097 KEYWORD easy,nonn AUTHOR Stefano Spezia, Jan 08 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 3 04:56 EDT 2022. Contains 355030 sequences. (Running on oeis4.)