login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A317094 a(n) = (n + 1)^2 + n!*L_n(-1), where L_n(x) is the Laguerre polynomial. 1
2, 6, 16, 50, 234, 1582, 13376, 130986, 1441810, 17572214, 234662352, 3405357826, 53334454586, 896324308830, 16083557845504, 306827170866362, 6199668952527906, 132240988644216166, 2968971263911289360, 69974827707903049554, 1727194482044146637962, 44552237162692939114766 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

For n > 2, a(n) is the number of join-endomorphisms for a nondistributive lattice of size n (see Theorem 3 in Quintero et al.).

LINKS

Table of n, a(n) for n=0..21.

Santiago Quintero, Sergio Ramírez, Camilo Rueda, and Frank Valencia, Counting and Computing Join- Endomorphisms in Lattices . [Research Report] LIX, Ecole polytechnique; INRIA Saclay - Ile-de-France. 2019. hal-02422624.

FORMULA

E.g.f.: exp(x/(1-x))/(1 - x) + exp(x)*(1 + 3*x + x^2).

a(n) = A000290(n+1) + A002720(n).

MATHEMATICA

Table[(n+1)^2+n!*LaguerreL[n, -1], {n, 0, 21}]

PROG

(PARI) my(x='x + O('x^22)); Vec(serlaplace(exp(x/(1-x))/(1 - x) + exp(x)*(1 + 3*x + x^2)))

(PARI) a(n) = (n+1)^2 + n!*pollaguerre(n, 0, -1); \\ Michel Marcus, Feb 05 2021

CROSSREFS

Cf. A000142 (n!), A000290, A002720, A274294, A274295.

Sequence in context: A002841 A136509 A100664 * A339844 A258797 A214983

Adjacent sequences:  A317091 A317092 A317093 * A317095 A317096 A317097

KEYWORD

easy,nonn

AUTHOR

Stefano Spezia, Jan 08 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 9 22:09 EDT 2021. Contains 343746 sequences. (Running on oeis4.)