login
A274295
a(n) = n+binomial(2*n-6,n-3)+binomial(2*n-5,n-3)+binomial(n-1,n-3)+Sum_{i=1..n-3} (binomial(n+i-3,n-3)+2*n-i-5).
2
1, 1, 3, 6, 16, 43, 120, 369, 1244, 4449, 16424, 61645, 233568, 890421, 3409866, 13105083, 50517580, 195234557, 756198408, 2934687173, 11408742152, 44420399805, 173191793402, 676104404123, 2642356839108, 10337529692357, 40481034411830, 158658210122079, 622329139387184, 2442857958597649
OFFSET
0,3
COMMENTS
For n >= 5 this is the number of residuated maps from the lattice N_n to itself.
LINKS
Erika D. Foreman, Order automorphisms on the lattice of residuated maps of some special nondistributive lattices, (2015). Univ. Louisville, Electronic Theses and Dissertations. Paper 2257.
FORMULA
G.f.: -11-12/(x - 1)^3 + x*(-4 + 31/(x-1)^3 + x*(1/sqrt(1 - 4*x) - 23/(x - 1)^3 + x/sqrt(1 - 4*x))). - Benedict W. J. Irwin, Aug 09 2016
a(n) ~ 5*4^(n-3)/sqrt(Pi*n). - Ilya Gutkovskiy, Aug 09 2016
Conjecture: (-n+2)*a(n) +(7*n-18)*a(n-1) +14*(-n+3)*a(n-2) +2*(3*n-2)*a(n-3) +(11*n-90)*a(n-4) +(-13*n+102)*a(n-5) +2*(2*n-17)*a(n-6)=0. - R. J. Mathar, Oct 07 2016
MAPLE
g:=n->n+binomial(2*n-6, n-3)+binomial(2*n-5, n-3)+binomial(n-1, n-3)+add((binomial(n+i-3, n-3)+2*n-i-5), i=1..n-3);
[seq(g(n), n=0..40)];
MATHEMATICA
Table[n + Binomial[2 * n - 6, n - 3] + Binomial[2 * n - 5, n - 3] + Binomial[n - 1, n - 3] + Sum[(Binomial[n + i - 3, n - 3] + 2 * n - i - 5), {i, 1, n - 3}], {n, 0, 20}] (* Benedict W. J. Irwin, Aug 09 2016 *)
CoefficientList[Series[-11-12/(x - 1)^3 + x*(-4 + 31/(x-1)^3 + x*(1/Sqrt[1 - 4*x] - 23/(x - 1)^3 + x/Sqrt[1 - 4*x])), {x, 0, 50}], x] (* G. C. Greubel, Jun 05 2017 *)
PROG
(PARI) x='x+O('x^50); Vec(-11-12/(x - 1)^3 + x*(-4 + 31/(x-1)^3 + x*(1/sqrt(1 - 4*x) - 23/(x - 1)^3 + x/sqrt(1 - 4*x)))) \\ G. C. Greubel, Jun 05 2017
CROSSREFS
Sequence in context: A202839 A371705 A007561 * A192676 A202846 A107269
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 18 2016
STATUS
approved