login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202839
Number of stacks of length 1 in all 2ndary structures of size n.
6
0, 0, 0, 1, 3, 6, 16, 43, 110, 284, 733, 1886, 4853, 12486, 32121, 82647, 212699, 547552, 1410023, 3632260, 9360140, 24129284, 62224692, 160522287, 414246823, 1069376386, 2761502201, 7133442743, 18432633823, 47643696626, 123182434292, 318575889057, 824125660356
OFFSET
0,5
COMMENTS
For "secondary structure" and "stack" see the Hofacker et al. reference, p. 209.
Number of stacks of length 2 in all 2ndary structures of size n+2.
Number of stacks of length 3 in all 2ndary structures of size n+4.
LINKS
I. L. Hofacker, P. Schuster and P. F. Stadler, Combinatorics of RNA secondary structures, Discrete Appl. Math., 88, 1998, 207-237.
P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1979), 261-272.
FORMULA
a(n) = Sum(k*A202838(n,k), k>=0).
a(n) = Sum(k*A202841(n+2,k), k>=0).
a(n) = Sum(k*A202843(n+4,k), k>=0).
G.f.: g(z) = z^2*(1-z^2)^2*S(S - 1)/(1 - z + z^2 -2*z^2*S), where S is defined by S = 1 + z*S + z^2*S(S-1) (the g.f. of the secondary structure numbers A004148).
a(n) ~ 5^(3/4) * phi^(2*n-3) / (2*sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, May 29 2022
D-finite with recurrence -(n+2)*(406*n-3981)*a(n) +(2022*n^2-15917*n-13552)*a(n-1) +4*(-402*n^2+2594*n+593)*a(n-2) +4*(-605*n^2+7719*n-23415)*a(n-3) +4*(-203*n^2-527*n+15295)*a(n-4) +2*(804*n^2-8404*n+14555)*a(n-5) +(2826*n^2-42913*n+153174)*a(n-6) -(1210*n-6753)*(n-10)*a(n-7)=0. - R. J. Mathar, Jul 26 2022
EXAMPLE
a(5)=6: representing unpaired vertices by v and arcs by AA, BB, etc., the 8 (= A004148(5)) secondary structures of size 5 are vvvvv, AvAvv, vvAvA, AvvAv, vAvvA, AvvvA, vAvAv, ABvBA; they have 0,1,1,1,1,1,1,0 stacks of length 1, respectively.
MAPLE
g := z^2*(1-z^2)^2*S*(S-1)/(1-z+z^2-2*z^2*S): S := ((1-z+z^2-sqrt(1-2*z-z^2-2*z^3+z^4))*1/2)/z^2: gser := series(g, z = 0, 35): seq(coeff(gser, z, n), n = 0 .. 32);
MATHEMATICA
CoefficientList[Series[-(1 - x^2)^2 * ((1 - x) + (-1 + 2*x + x^3) / Sqrt[(1 - 3*x + x^2) * (1 + x + x^2)]) / (2*x^2), {x, 0, 40}], x] (* Vaclav Kotesovec, May 29 2022 *)
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Dec 25 2011
STATUS
approved