|
|
A136508
|
|
G.f.: A(x) = Sum_{n>=0} (-1)^n * log(1 - x - 2^n*x^2)^n / n! .
|
|
3
|
|
|
1, 1, 3, 7, 23, 81, 361, 1923, 13113, 114433, 1315783, 20286135, 420198791, 12003852369, 464295025509, 25153926114307, 1847231277588405, 191568316434991857, 26902669460380225411, 5357197471644242149975
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
MATHEMATICA
|
With[{m = 30}, CoefficientList[Series[Sum[(-1)^j*Log[1 -x -2^j*x^2]^j/j!, {j, 0, m+2}], {x, 0, m}], x]] (* G. C. Greubel, Mar 15 2021 *)
|
|
PROG
|
(PARI) {a(n)=polcoeff(sum(i=0, n, (-1)^i*log(1-x-2^i*x^2 +x*O(x^n))^i/i!), n)}
(Magma)
m:=30; R<x>:=PowerSeriesRing(Rationals(), m);
Coefficients(R!( (&+[(-1)^j*Log(1-x-2^j*x^2)^j/Factorial(j) : j in [0..m+2]]) )); // G. C. Greubel, Mar 15 2021
(Sage)
P.<x> = PowerSeriesRing(QQ, prec)
return P( sum((-1)^j*log(1-x -2^j*x^2)^j/factorial(j) for j in (0..32)) ).list()
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|