login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323564
E.g.f. B(x) = 4 + Integral A(x)*C(x) dx such that C(x)^2 - B(x)^2 = 9 and B(x)^2 - A(x)^2 = 7.
7
4, 15, 136, 1470, 24128, 478320, 11464768, 319326960, 10178837504, 364859900160, 14534008182784, 636808845089280, 30439017021980672, 1576198832606638080, 87897652978230894592, 5251777898245369559040, 334706615832128692944896, 22664760114438656410583040, 1625030662504773488747216896, 122985265288422439779648798720
OFFSET
0,1
LINKS
FORMULA
E.g.f. B(x) and related series A(x) and C(x) satisfy the following relations.
(1a) A(x) = 3 + Integral B(x)*C(x) dx.
(1b) B(x) = 4 + Integral A(x)*C(x) dx.
(1c) C(x) = 5 + Integral A(x)*B(x) dx.
(2a) C(x)^2 - B(x)^2 = 9.
(2b) C(x)^2 - A(x)^2 = 16.
(2c) B(x)^2 - A(x)^2 = 7.
(3a) A(x)*B(x)*C(x) = A(x)*A'(x) = B(x)*B'(x) = C(x)*C'(x).
(3b) Integral 2*A(x)*B(x)*C(x) dx = A(x)^2 - 9 = B(x)^2 - 16 = C(x)^2 - 25.
(4a) B(x) + C(x) = 9 * exp( Integral A(x) dx ).
(4b) A(x) + C(x) = 8 * exp( Integral B(x) dx ).
(4c) A(x) + B(x) = 7 * exp( Integral C(x) dx ).
EXAMPLE
E.g.f. B(x) = 4 + 15*x + 136*x^2/2! + 1470*x^3/3! + 24128*x^4/4! + 478320*x^5/5! + 11464768*x^6/6! + 319326960*x^7/7! + 10178837504*x^8/8! + 364859900160*x^9/9! + 14534008182784*x^10/10! + ...
such that B(x) = 4 + Integral A(x)*C(x) dx.
RELATED SERIES.
A(x) = 3 + 20*x + 123*x^2/2! + 1540*x^3/3! + 23871*x^4/4! + 480260*x^5/5! + 11449599*x^6/6! + 319491220*x^7/7! + 10176946203*x^8/8! + 364884459380*x^9/9! + 14533663841187*x^10/10! + ... + A323563(n)*x^n/n! + ...
such that A(x) = 3 + Integral B(x)*C(x) dx.
C(x) = 5 + 12*x + 125*x^2/2! + 1500*x^3/3! + 24265*x^4/4! + 478236*x^5/5! + 11461625*x^6/6! + 319303500*x^7/7! + 10179006445*x^8/8! + 364862775468*x^9/9! + 14534000631125*x^10/10! + ... + A323565(n)*x^n/n! + ...
such that C(x) = 5 + Integral A(x)*B(x) dx.
B(x)^2 = 16 + 120*x + 1538*x^2/2! + 24000*x^3/3! + 480400*x^4/4! + 11444160*x^5/5! + 319475984*x^6/6! + 10177152000*x^7/7! + 364886675200*x^8/8! + 14533662074880*x^9/9! + ... + 2*A323566(n-1)*x^n/n! + ...
such that B(x)^2 - A(x)^2 = 7 and C(x)^2 - B(x)^2 = 9.
A(x) + B(x) = 7 * exp( Integral C(x) dx ) = 7 + 35*x + 259*x^2/2! + 3010*x^3/3! + 47999*x^4/4! + 958580*x^5/5! + 22914367*x^6/6! + 638818180*x^7/7! + 20355783707*x^8/8! + 729744359540*x^9/9! + 29067672023971*x^10/10! + ...
A(x) + C(x) = 8 * exp( Integral B(x) dx ) = 8 + 32*x + 248*x^2/2! + 3040*x^3/3! + 48136*x^4/4! + 958496*x^5/5! + 22911224*x^6/6! + 638794720*x^7/7! + 20355952648*x^8/8! + 729747234848*x^9/9! + 29067664472312*x^10/10! + ...
B(x) + C(x) = 9 * exp( Integral A(x) dx ) = 9 + 27*x + 261*x^2/2! + 2970*x^3/3! + 48393*x^4/4! + 956556*x^5/5! + 22926393*x^6/6! + 638630460*x^7/7! + 20357843949*x^8/8! + 729722675628*x^9/9! + 29068008813909*x^10/10! + ...
exp( Integral A(x) dx ) = 1 + 3*x + 29*x^2/2! + 330*x^3/3! + 5377*x^4/4! + 106284*x^5/5! + 2547377*x^6/6! + 70958940*x^7/7! + 2261982661*x^8/8! + 81080297292*x^9/9! + 3229778757101*x^10/10! + ... + A323569(n)*x^n/n! + ...
exp( Integral B(x) dx ) = 1 + 4*x + 31*x^2/2! + 380*x^3/3! + 6017*x^4/4! + 119812*x^5/5! + 2863903*x^6/6! + 79849340*x^7/7! + 2544494081*x^8/8! + 91218404356*x^9/9! + 3633458059039*x^10/10! + ... + A323568(n)*x^n/n! + ...
exp( Integral C(x) dx ) = 1 + 5*x + 37*x^2/2! + 430*x^3/3! + 6857*x^4/4! + 136940*x^5/5! + 3273481*x^6/6! + 91259740*x^7/7! + 2907969101*x^8/8! + 104249194220*x^9/9! + 4152524574853*x^10/10! + ... + A323567(n)*x^n/n! + ...
A(x)*B(x)*C(x) = 60 + 769*x + 12000*x^2/2! + 240200*x^3/3! + 5722080*x^4/4! + 159737992*x^5/5! + 5088576000*x^6/6! + 182443337600*x^7/7! + 7266831037440*x^8/8! + 318406925529856*x^9/9! + 15219462171648000*x^10/10! + ... + A323566(n)*x^n/n! + ...
such that A(x)*B(x)*C(x) = A(x)*A'(x) = B(x)*B'(x) = C(x)*C'(x).
PROG
(PARI) {b(n) = my(A=3, B=4, C=5); for(i=1, n,
A = 3 + intformal(B*C +x*O(x^n));
B = 4 + intformal(A*C);
C = 5 + intformal(A*B); );
n! * polcoeff(B, n)}
for(n=0, 30, print1(b(n), ", "))
CROSSREFS
Cf. A323563 (A), A323565 (C), A323566 (A*B*C), A323567 ((A+B)/7), A323568 ((A+C)/8), A323569 ((B+C)/9).
Sequence in context: A136506 A375994 A362499 * A246791 A037447 A197753
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 18 2019
STATUS
approved