login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A038185 One-dimensional cellular automaton 'sigma' (Rule 150). 2
1, 3, 5, 13, 17, 59, 81, 219, 257, 899, 1349, 3437, 4353, 15235, 20805, 56173, 65537, 229379, 344069, 876557, 1118225, 3913787, 5313617, 14399195, 16842753, 58949635, 88424453, 225271821, 285282321 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Generation n (starting from the generation 0: 1) cut after the central 1-column and interpreted as a binary number.

Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 518", based on the 5-celled von Neumann neighborhood. Initialized with a single black (ON) cell at stage zero. - Robert Price, Feb 22 2017

LINKS

Table of n, a(n) for n=0..28.

N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015

Eric Weisstein's World of Mathematics, Elementary Cellular Automaton

S. Wolfram, A New Kind of Science

Wolfram Research, Wolfram Atlas of Simple Programs

Index to 2D 5-Neighbor Cellular Automata

Index to Elementary Cellular Automata

Index entries for sequences related to cellular automata

MAPLE

bit_n := (x, n) -> `mod`(floor(x/(2^n)), 2);

sigmacut := proc(n): if (0 = n) then (1)

else sum('((bit_n(sigmagen(n-1), i+1+n-1)+bit_n(sigmagen(n-1), i+n-1)+bit_n(sigmagen(n-1), i-1+n-1)) mod 2)*(2^i)', 'i'=0..(n)) fi: end:

CROSSREFS

Cf. A006977, A006978, A038183, a(n) = floor(A038184[ n ]/2^n)

Sequence in context: A074854 A284143 A283912 * A284241 A284305 A306388

Adjacent sequences:  A038182 A038183 A038184 * A038186 A038187 A038188

KEYWORD

nonn

AUTHOR

Antti Karttunen, Feb 09 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 20:18 EDT 2019. Contains 328273 sequences. (Running on oeis4.)