login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A327157
Numbers that are members of unitary sigma aliquot cycles (union of unitary perfect, unitary amicable and unitary sociable numbers).
6
6, 30, 42, 54, 60, 90, 114, 126, 1140, 1260, 1482, 1878, 1890, 2142, 2178, 2418, 2958, 3522, 3534, 3582, 3774, 3906, 3954, 3966, 3978, 4146, 4158, 4434, 4446, 18018, 22302, 24180, 29580, 32130, 35220, 35238, 35340, 35820, 37740, 38682, 39060, 39540, 39660, 39780, 40446, 41460, 41580, 44340, 44460, 44772, 45402
OFFSET
1,1
COMMENTS
Positions of nonzeros in A327159.
Numbers n for which n = A034460^k(n) for some k >= 1, where A034460^k(n) means k-fold application of A034460 starting from n.
The terms that are not multiples of 6 are: 142310, 168730, 1077890, 1099390, 1156870, 1292570, ..., that seem all to be present in A063991.
Among the first 440 terms, there are numbers present in 1-cycles (A002827), 2-cycles (A063991), and also cycles of sizes 3, 4 (A319902), 5 (A097024), 6 (A319917), 14 (A097030), 25, 26, 39 and 65.
LINKS
J. O. M. Pedersen, Known Unitary Sociable Numbers of order different from four [Via Internet Archive Wayback-Machine]
EXAMPLE
6 is a member as A034460(6) = 6.
30 is a member as A034460(A034460(A034460(30))) = 30.
MATHEMATICA
(* Function cycleL[] and support a034460[] are defined in A327159 *)
a327157[n_] := Map[cycleL, Range[n]]
a327157[45402] (* Hartmut F. W. Hoft, Feb 04 2024 *)
PROG
(PARI)
A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); };
A034460(n) = (A034448(n) - n);
memo327159 = Map();
A327159(n) = if(1==n, 0, my(v, orgn=n, xs=Set([])); if(mapisdefined(memo327159, n, &v), v, while(n && !vecsearch(xs, n), xs = setunion([n], xs); n = A034460(n); if(mapisdefined(memo327159, n), for(i=1, #xs, mapput(memo327159, xs[i], 0)); return(0))); if(n==orgn, v = length(xs); for(i=1, v, mapput(memo327159, xs[i], v)), v = 0; mapput(memo327159, orgn, v)); (v)));
k=0; n=0; while(k<=1001, n++; if(t=A327159(n), k++; print(n, " -> ", t); write("b327157.txt", k, " ", n)));
CROSSREFS
Subsequence of A003062.
Sequence in context: A130512 A127662 A003062 * A336216 A309312 A101937
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 17 2019
STATUS
approved