

A014573


Smallest k such that phi(x) = k has exactly n solutions.


8



3, 0, 1, 2, 4, 8, 12, 32, 36, 40, 24, 48, 160, 396, 2268, 704, 312, 72, 336, 216, 936, 144, 624, 1056, 1760, 360, 2560, 384, 288, 1320, 3696, 240, 768, 9000, 432, 7128, 4200, 480, 576, 1296, 1200, 15936, 3312, 3072, 3240, 864, 3120, 7344, 3888, 720, 1680
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Carmichael conjectured that no term exists for n=1.


REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.


LINKS

Table of n, a(n) for n=0..50.
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Eric Weisstein's World of Mathematics, Carmichael's Totient Function conjecture


CROSSREFS

Cf. A000010. Essentially same as A007374, which is the main entry for this sequence.
Sequence in context: A049765 A194801 A273901 * A067166 A125209 A263313
Adjacent sequences: A014570 A014571 A014572 * A014574 A014575 A014576


KEYWORD

nonn,easy


AUTHOR

Eric W. Weisstein


EXTENSIONS

Link fixed by Charles R Greathouse IV, Oct 06 2009


STATUS

approved



