

A118860


Numbers k such that k1, k+1, 2k1, 2k+1, 3k1, 3k+1, 4k1 and 4k+1 are all primes.


6



21968100, 37674210, 81875220, 356467230, 416172330, 750662640, 1007393730, 1150070040, 1586271960, 1963954650, 3127171320, 3669568560, 4377895410, 4383541050, 5575083360, 5686935870, 5708418870, 7365234450, 7478474430, 7681046100, 8453862690, 8898688680
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

All terms are multiples of 210, hence simpler code is possible.


LINKS



EXAMPLE

21968100 is there because 21968099, 21968101, 43936199, 43936201, 65904299, 65904301, 87872399, 87872401 are all prime.


MATHEMATICA

tb={}; Do[If[(PrimeQ[n1]&&PrimeQ[n+1])&& (PrimeQ[2*n1]&&PrimeQ[2*n+1])&& (PrimeQ[3*n1]&&PrimeQ[3*n+1])&& (PrimeQ[4*n1]&&PrimeQ[4*n+1]), Print[n]; AppendTo[tb, n]], {n, 21968100, 10^8, 210}]; tb


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



