login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A130077 Largest x such that 2^x divides A001623(n), the number of reduced three-line Latin rectangles. 2
0, 2, 1, 3, 4, 6, 5, 6, 7, 9, 8, 11, 13, 14, 12, 16, 15, 17, 16, 18, 19, 21, 20, 21, 22, 24, 23, 27, 27, 30, 27, 29, 31, 33, 32, 34, 35, 37, 36, 37, 38, 40, 39, 42, 44, 45, 43, 50, 46, 48, 47, 49, 50, 52, 51, 52, 53, 55, 54, 59, 58, 62, 58, 60, 63, 65, 64, 66, 67, 69, 68, 69, 70 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,2

LINKS

Table of n, a(n) for n=3..75.

John Riordan, A recurrence relation for three-line Latin rectangles, Amer. Math. Monthly, 59 (1952), pp. 159-162.

D. S. Stones, The many formulas for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1.

D. S. Stones and I. M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204-215.

FORMULA

a(n) = A007814(A001623(n)). - Michel Marcus, Oct 02 2017

PROG

(PARI) a001623(n) = n*(n-3)!*sum(i=0, n, sum(j=0, n-i, (-1)^j*binomial(3*i+j+2, j)<<(n-i-j)/(n-i-j)!)*i!);

a(n) = valuation(a001623(n), 2); \\ Michel Marcus, Oct 02 2017

CROSSREFS

Cf. A001623, A007814, A130078, A130079.

Sequence in context: A029636 A293517 A122514 * A080412 A300948 A098164

Adjacent sequences:  A130074 A130075 A130076 * A130078 A130079 A130080

KEYWORD

nonn

AUTHOR

Douglas Stones (dssto1(AT)student.monash.edu.au), May 06 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 8 01:48 EDT 2020. Contains 335502 sequences. (Running on oeis4.)