login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001623
Number of 3 X n reduced (normalized) Latin rectangles.
(Formerly M3682 N1502)
13
1, 4, 46, 1064, 35792, 1673792, 103443808, 8154999232, 798030483328, 94866122760704, 13460459852344064, 2246551018310998016, 435626600453967929344, 97108406689489312301056, 24658059294992101453262848, 7075100096781964808223653888, 2277710095706779480096994066432, 817555425148510266964075644059648
OFFSET
3,2
COMMENTS
A Latin rectangle [L_{n,k}] is called normalized [N_{n,k}] if the first row is (0,1, . . . , n-1), and reduced [R_{n,k}] if the first row is (0,1, . . . , n-1) and the first column is (0,1, . . . , k-1). Then L_{n,k} = n! N_{n,k} = (n! (n-1)! /(n-k)!) R_{n,k}.
REFERENCES
S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127. [Annotated scanned copy]
D. S. Stones, The many formulas for the number of Latin rectangles, Electron. J. Combin. 17 (2010), A1.
D. S. Stones and I. M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204-215.
R. J. Stones, S. Lin, X. Liu, G. Wang, On Computing the Number of Latin Rectangles, Graphs and Combinatorics (2016) 32:1187-1202; DOI 10.1007/s00373-015-1643-1.
FORMULA
a(n) ~ (n-1)!^2/exp(3) ~ 2*Pi*n^(2*n-1)/exp(2*n+3). - Vaclav Kotesovec, Sep 08 2016
EXAMPLE
G.f. = x^3 + 4*x^4 + 46*x^5 + 1064*x^6 + 35792*x^7 + 1673792*x^8 + ...
MAPLE
f:= n-> add(n*factorial(n-3)*factorial(i)*simplify(hypergeom([3*i+3, -n+i], [], 1/2))/(2^(-n+i)*factorial(n-i)), i=0..n):
map(f, [$3..30]); # Robert Israel, Nov 07 2016
MATHEMATICA
Table[Sum[ n (n - 3)! (-1)^j 2^(n -i-j) i!/(n-i-j)! Binomial[3 i + j + 2, j], {i, 0, n}, {j, 0, n - i} ], {n, 3, 25}] (* Wouter Meeussen, Oct 27 2013 *)
PROG
(PARI) A001623 = n->n*(n-3)!*sum(i=0, n, sum(j=0, n-i, (-1)^j*binomial(3*i+j+2, j)<<(n-i-j)/(n-i-j)!)*i!) \\ - M. F. Hasler, Oct 27 2013
CROSSREFS
Cf. A001009.
Sequence in context: A099023 A000657 A356901 * A188634 A331978 A210855
KEYWORD
nonn,nice
EXTENSIONS
Better description Jul 15 1995
Mathematica program, more terms, better definition, comment and Stones link from Wouter Meeussen, Oct 27 2013
Minor corrections by M. F. Hasler, Oct 27 2013
STATUS
approved