login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188634
E.g.f.: Sum_{n>=0} (1 - exp(-(n+1)*x))^n/(n+1).
5
1, 1, 4, 46, 1066, 41506, 2441314, 202229266, 22447207906, 3216941445106, 578333776748674, 127464417117501586, 33800841048945424546, 10617398393395844992306, 3898852051843774954576834, 1654948033478889053351543506, 804119629083230641164978005986
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{j=0..n} (j+1)^(n-1) * Sum_{i=0..j} (-1)^(n+j-i)*C(j, i)*(j-i)^n.
Ignoring the initial term, equals a diagonal of array A099594, which forms the poly-Bernoulli numbers B(-k,n).
Limit n->infinity a(n)^(1/n)/n^2 = 0.281682... - Vaclav Kotesovec, Dec 30 2012
a(n) = A266695(2*n-1) for n >= 1. - Alois P. Heinz, Apr 17 2024
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 46*x^3/3! + 1066*x^4/4! + 41506*x^5/5! +...
where
A(x) = 1 + (1-exp(-2*x))/2 + (1-exp(-3*x))^2/3 + (1-exp(-4*x))^3/4 + (1-exp(-5*x))^4/5 + (1-exp(-6*x))^5/6 +...
MATHEMATICA
Table[Sum[(-1)^(k+n)*(k+1)^(n-1)*k!*StirlingS2[n, k], {k, 0, n}], {n, 0, 20}]
Table[n!*SeriesCoefficient[Sum[(1-E^(-x*(k+1)))^k/(k+1), {k, 0, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Dec 30 2012 *)
PROG
(PARI) {a(n)=n!*polcoeff(sum(k=0, n, (1-exp(-(k+1)*x+x*O(x^n)))^k/(k+1)), n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=sum(j=0, n, (j+1)^(n-1)*sum(i=0, j, (-1)^(n+j-i)*binomial(j, i)*(j-i)^n))}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 28 2012
STATUS
approved