login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A188634 E.g.f.: Sum_{n>=0} (1 - exp(-(n+1)*x))^n/(n+1). 3
1, 1, 4, 46, 1066, 41506, 2441314, 202229266, 22447207906, 3216941445106, 578333776748674, 127464417117501586, 33800841048945424546, 10617398393395844992306, 3898852051843774954576834, 1654948033478889053351543506, 804119629083230641164978005986 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

a(n) = Sum_{j=0..n} (j+1)^(n-1) * Sum_{i=0..j} (-1)^(n+j-i)*C(j, i)*(j-i)^n.

Ignoring the initial term, equals a diagonal of array A099594, which forms the poly-Bernoulli numbers B(-k,n).

Limit n->infinity a(n)^(1/n)/n^2 = 0.281682... - Vaclav Kotesovec, Dec 30 2012

EXAMPLE

E.g.f.: A(x) = 1 + x + 4*x^2/2! + 46*x^3/3! + 1066*x^4/4! + 41506*x^5/5! +...

where

A(x) = 1 + (1-exp(-2*x))/2 + (1-exp(-3*x))^2/3 + (1-exp(-4*x))^3/4 + (1-exp(-5*x))^4/5 + (1-exp(-6*x))^5/6 +...

MATHEMATICA

Table[Sum[(-1)^(k+n)*(k+1)^(n-1)*k!*StirlingS2[n, k], {k, 0, n}], {n, 0, 20}]

Table[n!*SeriesCoefficient[Sum[(1-E^(-x*(k+1)))^k/(k+1), {k, 0, n}], {x, 0, n}], {n, 0, 20}]  (* Vaclav Kotesovec, Dec 30 2012 *)

PROG

(PARI) {a(n)=n!*polcoeff(sum(k=0, n, (1-exp(-(k+1)*x+x*O(x^n)))^k/(k+1)), n)}

for(n=0, 20, print1(a(n), ", "))

(PARI) {a(n)=sum(j=0, n, (j+1)^(n-1)*sum(i=0, j, (-1)^(n+j-i)*binomial(j, i)*(j-i)^n))}

for(n=0, 20, print1(a(n), ", "))

CROSSREFS

Cf. A099594, A092552, A191908.

Sequence in context: A099023 A000657 A001623 * A210855 A324228 A002077

Adjacent sequences:  A188631 A188632 A188633 * A188635 A188636 A188637

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 28 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 26 01:32 EDT 2019. Contains 326324 sequences. (Running on oeis4.)