login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356901
a(n) = (2*n)! * [x^(2*n)] arctan(x / sqrt(2))^2.
0
0, 1, -4, 46, -1056, 40536, -2342880, 190229040, -20655129600, 2890827273600, -506836099929600, 108811461852576000, -28078128329061888000, 8574915159297970560000, -3059025135601894018560000, 1260573112806548772591360000, -594261372327243392714342400000
OFFSET
0,3
FORMULA
a(n) = (2*n)! * [x^(2*n)] ((log(1 + I*x/sqrt(2)) - log(1 - I*x/sqrt(2)))/2)^2.
MAPLE
ser := series(arctan(x / sqrt(2))^2, x, 38):
seq((2*n)! * coeff(ser, x, 2*n), n = 0..17);
CROSSREFS
Sequence in context: A191870 A099023 A000657 * A001623 A188634 A331978
KEYWORD
sign
AUTHOR
Peter Luschny, Sep 03 2022
STATUS
approved