The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001623 Number of 3 X n reduced (normalized) Latin rectangles.
(Formerly M3682 N1502)
13

%I M3682 N1502 #51 Nov 09 2016 15:03:10

%S 1,4,46,1064,35792,1673792,103443808,8154999232,798030483328,

%T 94866122760704,13460459852344064,2246551018310998016,

%U 435626600453967929344,97108406689489312301056,24658059294992101453262848,7075100096781964808223653888,2277710095706779480096994066432,817555425148510266964075644059648

%N Number of 3 X n reduced (normalized) Latin rectangles.

%C A Latin rectangle [L_{n,k}] is called normalized [N_{n,k}] if the first row is (0,1, . . . , n-1), and reduced [R_{n,k}] if the first row is (0,1, . . . , n-1) and the first column is (0,1, . . . , k-1). Then L_{n,k} = n! N_{n,k} = (n! (n-1)! /(n-k)!) R_{n,k}.

%D S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Robert Israel, <a href="/A001623/b001623.txt">Table of n, a(n) for n = 3..254</a>

%H S. M. Kerawala, <a href="/A001623/a001623.pdf">The enumeration of the Latin rectangle of depth three by means of a difference equation</a>, Bull. Calcutta Math. Soc., 33 (1941), 119-127. [Annotated scanned copy]

%H D. S. Stones, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v17i1a1">The many formulas for the number of Latin rectangles</a>, Electron. J. Combin. 17 (2010), A1.

%H D. S. Stones and I. M. Wanless, <a href="http://dx.doi.org/10.1016/j.jcta.2009.03.019">Divisors of the number of Latin rectangles</a>, J. Combin. Theory Ser. A 117 (2010), 204-215.

%H R. J. Stones, S. Lin, X. Liu, G. Wang, <a href="http://dx.doi.org/10.1007/s00373-015-1643-1">On Computing the Number of Latin Rectangles</a>, Graphs and Combinatorics (2016) 32:1187-1202; DOI 10.1007/s00373-015-1643-1.

%H <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>

%F a(n) ~ (n-1)!^2/exp(3) ~ 2*Pi*n^(2*n-1)/exp(2*n+3). - _Vaclav Kotesovec_, Sep 08 2016

%e G.f. = x^3 + 4*x^4 + 46*x^5 + 1064*x^6 + 35792*x^7 + 1673792*x^8 + ...

%p f:= n-> add(n*factorial(n-3)*factorial(i)*simplify(hypergeom([3*i+3, -n+i], [], 1/2))/(2^(-n+i)*factorial(n-i)),i=0..n):

%p map(f, [$3..30]); # _Robert Israel_, Nov 07 2016

%t Table[Sum[ n (n - 3)! (-1)^j 2^(n -i-j) i!/(n-i-j)! Binomial[3 i + j + 2, j], {i, 0, n}, {j, 0, n - i} ], {n, 3, 25}] (* _Wouter Meeussen_, Oct 27 2013 *)

%o (PARI) A001623 = n->n*(n-3)!*sum(i=0,n,sum(j=0,n-i,(-1)^j*binomial(3*i+j+2,j)<<(n-i-j)/(n-i-j)!)*i!) \\ - _M. F. Hasler_, Oct 27 2013

%Y Cf. A001009.

%K nonn,nice

%O 3,2

%A _N. J. A. Sloane_

%E Better description Jul 15 1995

%E Mathematica program, more terms, better definition, comment and Stones link from _Wouter Meeussen_, Oct 27 2013

%E Minor corrections by _M. F. Hasler_, Oct 27 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 01:40 EDT 2024. Contains 372528 sequences. (Running on oeis4.)