The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A130079 a(n) = n - A130077(n), i.e., n minus the largest x such that 2^x divides A001623(n), the number of reduced three-line Latin rectangles. 2
 3, 2, 4, 3, 3, 2, 4, 4, 4, 3, 5, 3, 2, 2, 5, 2, 4, 3, 5, 4, 4, 3, 5, 5, 5, 4, 6, 3, 4, 2, 6, 5, 4, 3, 5, 4, 4, 3, 5, 5, 5, 4, 6, 4, 3, 3, 6, 0, 5, 4, 6, 5, 5, 4, 6, 6, 6, 5, 7, 3, 5, 2, 7, 6, 4, 3, 5, 4, 4, 3, 5, 5, 5, 4, 6, 4, 1, 3, 6, 4, 5, 4, 6, 5, 5, 4, 6, 6, 6, 5, 7, 4, 5, 3, 7, 6, 5, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 LINKS John Riordan, A recurrence relation for three-line Latin rectangles, Amer. Math. Monthly, 59 (1952), pp. 159-162. D. S. Stones, The many formulas for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1. D. S. Stones and I. M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204-215. PROG (PARI) a001623(n) = n*(n-3)!*sum(i=0, n, sum(j=0, n-i, (-1)^j*binomial(3*i+j+2, j)<<(n-i-j)/(n-i-j)!)*i!); a(n) = n - valuation(a001623(n), 2); \\ Michel Marcus, Oct 02 2017 CROSSREFS Cf. A001623, A130077, A130078. Sequence in context: A227471 A101403 A025509 * A247190 A243289 A134559 Adjacent sequences:  A130076 A130077 A130078 * A130080 A130081 A130082 KEYWORD nonn AUTHOR Douglas Stones (dssto1(AT)student.monash.edu.au), May 06 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 10:18 EST 2022. Contains 350471 sequences. (Running on oeis4.)