login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090116 a(n)=x is the least number such that x^2 is "surrounded" by two closest primes, prevprime(x^2) and nextprime(x^2), whose difference nextprime - prevprime = 2n. 5
2, 3, 5, 19, 12, 25, 11, 44, 23, 30, 57, 41, 50, 102, 76, 104, 100, 149, 175, 159, 348, 276, 305, 397, 461, 189, 345, 1059, 437, 820, 833, 1002, 509, 1283, 822, 1099, 729, 1090, 693, 2710, 1110, 1284, 3563, 1823, 1370, 4332, 3771, 1380, 4394, 2160, 2011, 1498 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(14) > 16*10^6. - David A. Corneth, Jun 12 2017

LINKS

David A. Corneth, Table of n, a(n) for n = 1..213

David A. Corneth, Table of n, a(n) for n = 1..302 where a(n) <= (about) 16*10^6

EXAMPLE

n=5: a(5)=12 because the primes closest to 12^2 = 144 are {139,149} whose difference 149 - 139 = 10 = 2n and 144 is the smallest square with this property;

n=1: a(1)=2 because 2^2=4 is surrounded by primes {3,5} with difference 5 - 3 = 2 = 2n.

MATHEMATICA

de[x_ := Prime[PrimePi[x]+1]-Prime[PrimePi[x]] t=Table[de[w^2], {w, 1, 50000}]; mt=Table[Min[Flatten[Position[t, 2*j]]], {j, 1, 100}]

PROG

(PARI) first(n) = my(todo = n, res = vector(n), p, x = 2); while(todo > 0, m = nextprime(x^2) - precprime(x^2); if(m <= 2*n, if(res[m/2]==0, res[m/2] = x; todo--)); x++); res \\ David A. Corneth, Jun 12 2017

CROSSREFS

Cf. A090117, A090118, A090119.

Sequence in context: A128532 A130076 A223704 * A038876 A038932 A019377

Adjacent sequences:  A090113 A090114 A090115 * A090117 A090118 A090119

KEYWORD

nonn

AUTHOR

Labos Elemer, Jan 09 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 19:30 EDT 2020. Contains 334595 sequences. (Running on oeis4.)