login
A090115
a(n)=Product[p(n)-j, j=1..n]/n!=A090114(n)/n!.
0
1, 1, 4, 15, 252, 924, 11440, 43758, 497420, 13123110, 54627300, 1251677700, 12033222880, 52860229080, 511738760544, 10363194502115, 197548686920970, 925029565741050, 17302625882942400, 161884603662657876
OFFSET
1,3
COMMENTS
It needs proof that A090114(n) is always divisible by n!, that is, these terms are integers.
EXAMPLE
n=5: p(5)=11, a(5)=(11-1)()(11-2)(11-3)(11-4)(11-5)/5!= 10.9.8.7.6/120=30240=252
MATHEMATICA
Table[Apply[Times, Table[Prime[w]-j, {j, 1, w}]]/w!, {w, 1, 15}]
CROSSREFS
Sequence in context: A153060 A139244 A369727 * A051999 A048731 A363351
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 08 2004
STATUS
approved