OFFSET
0,3
COMMENTS
Number of equivalence classes of n X n binary matrices with an even number of 1's in each column under permutation of rows.
Number of equivalence classes of n X n binary matrices under permutation of rows and complementation of columns.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..50
FORMULA
a(n) = binomial(2^n+n-1, n)/2^n for odd n;
a(n) = (binomial(2^n+n-1, n) + (2^n-1)*binomial(2^(n-1)+n/2-1, n/2))/2^n for even n.
MATHEMATICA
A363351[n_]:=(Binomial[2^n+n-1, n]+If[EvenQ[n], (2^n-1)Binomial[2^(n-1)+n/2-1, n/2], 0])/2^n; Array[A363351, 20, 0] (* Paolo Xausa, Nov 19 2023 *)
PROG
(PARI) a(n)={(binomial(2^n+n-1, n) + if(n%2==0, (2^n-1)*binomial(2^(n-1)+n/2-1, n/2)))/2^n}
CROSSREFS
KEYWORD
nonn
AUTHOR
Andrew Howroyd, May 30 2023
STATUS
approved