login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363351
Number of n element multisets of length n vectors over GF(2) that sum to zero.
2
1, 1, 4, 15, 276, 11781, 1878976, 1025425687, 1991615557152, 13956142211859705, 356420795746828010496, 33403125520521519582574755, 11550847036800645994553295682560, 14809214844165378046279886451931058885, 70706990798105074752791720424861516970573824
OFFSET
0,3
COMMENTS
Number of equivalence classes of n X n binary matrices with an even number of 1's in each column under permutation of rows.
Number of equivalence classes of n X n binary matrices under permutation of rows and complementation of columns.
LINKS
FORMULA
a(n) = binomial(2^n+n-1, n)/2^n for odd n;
a(n) = (binomial(2^n+n-1, n) + (2^n-1)*binomial(2^(n-1)+n/2-1, n/2))/2^n for even n.
MATHEMATICA
A363351[n_]:=(Binomial[2^n+n-1, n]+If[EvenQ[n], (2^n-1)Binomial[2^(n-1)+n/2-1, n/2], 0])/2^n; Array[A363351, 20, 0] (* Paolo Xausa, Nov 19 2023 *)
PROG
(PARI) a(n)={(binomial(2^n+n-1, n) + if(n%2==0, (2^n-1)*binomial(2^(n-1)+n/2-1, n/2)))/2^n}
CROSSREFS
Main diagonal of A362905.
Cf. A006383.
Sequence in context: A090115 A051999 A048731 * A000881 A354462 A109923
KEYWORD
nonn
AUTHOR
Andrew Howroyd, May 30 2023
STATUS
approved