login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363350
Number of n element multisets of length 4 vectors over GF(2) that sum to zero.
2
1, 1, 16, 51, 276, 969, 3504, 10659, 30954, 81719, 205040, 482885, 1088100, 2340135, 4850640, 9694845, 18789795, 35357670, 64833120, 115997970, 203014680, 347993910, 585292320, 966955410, 1571349780, 2514084066, 3964589856, 6167026726, 9470900056, 14369476066, 21554373984
OFFSET
0,3
COMMENTS
a(n) is the number of n X 4 binary matrices under row permutations and column complementations.
See A362905 for other interpretations.
LINKS
Index entries for linear recurrences with constant coefficients, signature (8, -20, -8, 126, -168, -196, 680, -239, -1072, 1240, 560, -1820, 560, 1240, -1072, -239, 680, -196, -168, 126, -8, -20, 8, -1).
FORMULA
G.f.: (1 - 7*x + 28*x^2 - 49*x^3 + 70*x^4 - 49*x^5 + 28*x^6 - 7*x^7 + x^8)/((1 - x)^16*(1 + x)^8).
a(n) = binomial(n+15, 15)/16 for odd n;
a(n) = (binomial(n+15, 15) + 15*binomial(n/2+7, 7))/16 for even n.
MATHEMATICA
A363350[n_]:=(Binomial[n+15, 15]+If[EvenQ[n], 15Binomial[n/2+7, 7], 0])/16; Array[A363350, 50, 0] (* Paolo Xausa, Nov 18 2023 *)
PROG
(PARI) a(n) = (binomial(n+15, 15) + if(n%2==0, 15*binomial(n/2+7, 7)))/16
CROSSREFS
Column k=4 of A362905.
Cf. A006382.
Sequence in context: A080860 A204716 A192248 * A297640 A236523 A235660
KEYWORD
nonn,easy
AUTHOR
Andrew Howroyd, May 30 2023
STATUS
approved