OFFSET
0,3
COMMENTS
a(n) is the number of n X 4 binary matrices under row permutations and column complementations.
See A362905 for other interpretations.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (8, -20, -8, 126, -168, -196, 680, -239, -1072, 1240, 560, -1820, 560, 1240, -1072, -239, 680, -196, -168, 126, -8, -20, 8, -1).
FORMULA
G.f.: (1 - 7*x + 28*x^2 - 49*x^3 + 70*x^4 - 49*x^5 + 28*x^6 - 7*x^7 + x^8)/((1 - x)^16*(1 + x)^8).
a(n) = binomial(n+15, 15)/16 for odd n;
a(n) = (binomial(n+15, 15) + 15*binomial(n/2+7, 7))/16 for even n.
MATHEMATICA
A363350[n_]:=(Binomial[n+15, 15]+If[EvenQ[n], 15Binomial[n/2+7, 7], 0])/16; Array[A363350, 50, 0] (* Paolo Xausa, Nov 18 2023 *)
PROG
(PARI) a(n) = (binomial(n+15, 15) + if(n%2==0, 15*binomial(n/2+7, 7)))/16
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Andrew Howroyd, May 30 2023
STATUS
approved