The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192248 0-sequence of reduction of binomial coefficient sequence B(n,4)=A000332 by x^2 -> x+1. 3
 1, 1, 16, 51, 191, 569, 1619, 4259, 10694, 25709, 59743, 134818, 296798, 639518, 1352498, 2813750, 5769200, 11676395, 23358450, 46239770, 90667076, 176244326, 339887026, 650715076, 1237467151, 2338753519, 4394813644, 8214444389 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]". LINKS Table of n, a(n) for n=1..28. FORMULA Conjecture: G.f.: -x*(-1+5*x-20*x^2+30*x^3-25*x^4+8*x^5) / ( (x-1)*(x^2+x-1)^5 ). - R. J. Mathar, May 04 2014 MATHEMATICA c[n_] := n (n + 1) (n + 2) (n + 3)/24; (* binomial B(n, 4), A000332 *) Table[c[n], {n, 1, 15}] q[x_] := x + 1; p[0, x_] := 1; p[n_, x_] := p[n - 1, x] + (x^n)*c[n + 1] reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[ Last[Most[ FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 40}] Table[Coefficient[Part[t, n], x, 0], {n, 1, 40}] (* A192248 *) Table[Coefficient[Part[t, n], x, 1], {n, 1, 40}] (* A192249 *) Table[Coefficient[Part[t, n]/5, x, 1], {n, 1, 40}] (* A192069 *) (* by Peter J. C. Moses, Jun 20 2011 *) CROSSREFS Cf. A192232, A192249, A192069. Sequence in context: A204962 A080860 A204716 * A363350 A297640 A236523 Adjacent sequences: A192245 A192246 A192247 * A192249 A192250 A192251 KEYWORD nonn AUTHOR Clark Kimberling, Jun 27 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 17 18:50 EDT 2024. Contains 374377 sequences. (Running on oeis4.)