login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n element multisets of length 4 vectors over GF(2) that sum to zero.
2

%I #13 Nov 19 2023 08:25:34

%S 1,1,16,51,276,969,3504,10659,30954,81719,205040,482885,1088100,

%T 2340135,4850640,9694845,18789795,35357670,64833120,115997970,

%U 203014680,347993910,585292320,966955410,1571349780,2514084066,3964589856,6167026726,9470900056,14369476066,21554373984

%N Number of n element multisets of length 4 vectors over GF(2) that sum to zero.

%C a(n) is the number of n X 4 binary matrices under row permutations and column complementations.

%C See A362905 for other interpretations.

%H Andrew Howroyd, <a href="/A363350/b363350.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_24">Index entries for linear recurrences with constant coefficients</a>, signature (8, -20, -8, 126, -168, -196, 680, -239, -1072, 1240, 560, -1820, 560, 1240, -1072, -239, 680, -196, -168, 126, -8, -20, 8, -1).

%F G.f.: (1 - 7*x + 28*x^2 - 49*x^3 + 70*x^4 - 49*x^5 + 28*x^6 - 7*x^7 + x^8)/((1 - x)^16*(1 + x)^8).

%F a(n) = binomial(n+15, 15)/16 for odd n;

%F a(n) = (binomial(n+15, 15) + 15*binomial(n/2+7, 7))/16 for even n.

%t A363350[n_]:=(Binomial[n+15,15]+If[EvenQ[n],15Binomial[n/2+7,7],0])/16;Array[A363350,50,0] (* _Paolo Xausa_, Nov 18 2023 *)

%o (PARI) a(n) = (binomial(n+15,15) + if(n%2==0, 15*binomial(n/2+7, 7)))/16

%Y Column k=4 of A362905.

%Y Cf. A006382.

%K nonn,easy

%O 0,3

%A _Andrew Howroyd_, May 30 2023