login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119784
Numerator of Sum[Sum[(-1)^(i+1)*1/(i*j)^2, {i, 1, n}], {j, 1, n}].
0
1, 15, 1519, 23575, 15907111, 5224037, 13034567237, 206747823917, 51412399560631, 10224262569323, 152012226379719803, 151406414338463843, 4372018721271579430163, 4359099317599237566323, 21975413631947472215359
OFFSET
1,2
COMMENTS
Prime p divides a((p-1)/2) for p>3. p^2 divides a(p-1) for prime p>3.
FORMULA
a(n) = numerator[Sum[Sum[(-1)^(i+1)*1/(i*j)^2, {i, 1, n}], {j, 1, n}]]. a(n) = A119682(n)*A007406(n).
MATHEMATICA
Numerator[Table[Sum[Sum[(-1)^(i+1)*1/(i*j)^2, {i, 1, n}], {j, 1, n}], {n, 1, 20}]]
CROSSREFS
Sequence in context: A338634 A209680 A122469 * A199228 A344638 A209681
KEYWORD
frac,nonn
AUTHOR
Alexander Adamchuk, Jun 25 2006
STATUS
approved