login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322357
a(n) = A322354(n) / A322356(n).
3
1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 6, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3
OFFSET
1,2
FORMULA
a(n) = A322354(n) / A322356(n).
MATHEMATICA
f[n_] := If[n == 1, 1, Times @@ Power @@@ ({#[[1]] + 2, #[[2]]} & /@ FactorInteger [n])]; rad[n_] := Times @@ (First@# & /@ FactorInteger@n); fun[p_, n_] := If[ PrimeQ[p + 2] && Divisible[n, p + 2], p + 2, 1]; a[n_] := GCD[rad[n], f[rad[n]]]/ Times @@ (fun[#, n] & /@ FactorInteger[n][[;; , 1]]); Array[a, 120] (* Amiram Eldar, Dec 16 2018 *)
PROG
(PARI)
A166590(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] += 2); factorback(f); };
A322362(n) = gcd(n, A166590(n));
A007947(n) = factorback(factorint(n)[, 1]);
A322356(n) = { my(f = factor(n), m=1); for(i=1, #f~, if(isprime(f[i, 1]+2)&&!(n%(f[i, 1]+2)), m *= (f[i, 1]+2))); (m); };
A322357(n) = (A322354(n)/A322356(n));
CROSSREFS
Sequence in context: A167967 A160990 A347516 * A160989 A066788 A160988
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 16 2018
STATUS
approved