login
A258716
Decimal expansion of 3 + 2*Sum_{k>=0} 1/Product_{i=0..k} (2^(2^i) - 1).
4
5, 7, 1, 1, 2, 8, 5, 4, 0, 5, 7, 0, 9, 6, 3, 3, 4, 4, 6, 6, 6, 6, 5, 2, 5, 4, 2, 9, 1, 8, 1, 4, 7, 9, 1, 0, 4, 6, 7, 9, 7, 6, 5, 8, 7, 7, 1, 9, 8, 9, 7, 5, 4, 5, 6, 9, 3, 7, 9, 5, 7, 1, 7, 0, 6, 7, 9, 5, 0, 1, 8, 9, 9, 9, 5, 5, 4, 4, 2, 8
OFFSET
1,1
LINKS
Gary W. Adamson and N. J. A. Sloane, Correspondence, May 1994, including Adamson's MSS "Algorithm for Generating nth Row of Pascal's Triangle, mod 2, from n", and "The Tower of Hanoi Wheel". Defines this number.
FORMULA
Equals 3 + A258715.
From Amiram Eldar, Feb 19 2024: (Start)
Equals 2 * A258714 + 3.
Equals 2/A215016. (End)
EXAMPLE
5.7112854057096334466665254291814791046797658771989754...
MATHEMATICA
RealDigits[2/NProduct[1 - 1/2^(2^k), {k, 0, Infinity}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Feb 19 2024 *)
PROG
(PARI) 2/prodinf(k = 0, 1 - 1/2^(2^k)) \\ Amiram Eldar, Feb 19 2024
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Jun 15 2015
STATUS
approved