login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108950
Number of partitions of n with more odd parts than even parts.
12
1, 1, 2, 3, 4, 7, 9, 14, 18, 27, 35, 49, 64, 86, 113, 148, 192, 247, 319, 404, 517, 649, 822, 1024, 1285, 1590, 1979, 2436, 3007, 3682, 4515, 5501, 6703, 8131, 9851, 11899, 14344, 17252, 20703, 24804, 29640, 35377, 42115, 50085, 59415, 70420, 83261, 98365, 115947, 136557
OFFSET
1,3
LINKS
B. Kim, E. Kim, and J. Lovejoy, Parity bias in partitions, European J. Combin., 89 (2020), 103159, 19 pp.
FORMULA
G.f.: Sum_{k>=0} x^k*(1-x^(2*k))/Product_{i=1..k} (1-x^(2*i))^2. - Vladeta Jovovic, Aug 19 2007
a(n) = A130780(n) - A045931(n) = A171967(n) - A108949(n). - Reinhard Zumkeller, Jan 21 2010
a(n) = Sum_{k=1..n} A240009(n,k). - Alois P. Heinz, Mar 30 2014
G.f.: (Product_{k>=1} 1/(1-x^(2*k-1)))*Sum_{n>=1} q^(2*n^2-n)*(1-q^(2*n))/Product_{k=1..n} (1-q^(2*k))^2. - Jeremy Lovejoy, Jan 12 2021
EXAMPLE
a(4) = 3: {[3,1], [2,1,1], [1,1,1,1]}; a(5) = 4: {[5], [3,1,1], [2,1,1,1], [1,1,1,1,1]}.
MAPLE
with(combinat, partition):oddbigrevn:=proc(n::nonnegint) local evencount, oddcount, bigcount, parts, i, j; printlevel:=-1; bigcount:=0; partitions:=partition(n); for i from 1 to nops(partitions) do evencount:=0; oddcount:=0; for j from 1 to nops(partitions[i]) do if (op(j, partitions[i]) mod 2 <>0) then oddcount:=oddcount+1 fi; if (op(j, partitions[i]) mod 2 =0) then evencount:=evencount+1 fi od; if (evencount<oddcount) then bigcount:=bigcount+1 fi od; printlevel:=1; return(bigcount) end proc; seq(oddbigrevn(i), i=1..42);
# second Maple program:
b:= proc(n, i, t) option remember; `if`(n=0,
`if`(t>0, 1, 0), `if`(i<1, 0, b(n, i-1, t)+
`if`(i>n, 0, b(n-i, i, t+(2*irem(i, 2)-1)))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=1..80); # Alois P. Heinz, Mar 30 2014
MATHEMATICA
p[n_] := p[n] = Select[IntegerPartitions[n], Count[#, _?OddQ] > Count[#, _?EvenQ] &]; t = Table[p[n], {n, 0, 15}] (* partitions of n with # odd parts > # even parts *)
TableForm[t] (* partitions, vertical format *)
Table[Length[p[n]], {n, 1, 30}] (* A108950 *)
(* Peter J. C. Moses, Mar 10 2014 *)
b[n_, i_, t_] := b[n, i, t] = If[n==0, If[t>0, 1, 0], If[i<1, 0, b[n, i-1, t] + If[i>n, 0, b[n-i, i, t + (2*Mod[i, 2]-1)]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Nov 16 2015, after Alois P. Heinz *)
CROSSREFS
Cf. A045931 for #even parts = #odd parts, A108949 for #even parts > #odd parts.
Cf. A171966, A171967. - Reinhard Zumkeller, Jan 21 2010
Sequence in context: A139078 A065046 A049709 * A238545 A325343 A238495
KEYWORD
nonn
AUTHOR
Len Smiley, Jul 21 2005
EXTENSIONS
More terms from Joerg Arndt, Oct 04 2012
STATUS
approved