OFFSET
1,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000
B. Kim, E. Kim, and J. Lovejoy, Parity bias in partitions, European J. Combin., 89 (2020), 103159, 19 pp.
FORMULA
G.f.: Sum_{k>=0} x^k*(1-x^(2*k))/Product_{i=1..k} (1-x^(2*i))^2. - Vladeta Jovovic, Aug 19 2007
a(n) = Sum_{k=1..n} A240009(n,k). - Alois P. Heinz, Mar 30 2014
G.f.: (Product_{k>=1} 1/(1-x^(2*k-1)))*Sum_{n>=1} q^(2*n^2-n)*(1-q^(2*n))/Product_{k=1..n} (1-q^(2*k))^2. - Jeremy Lovejoy, Jan 12 2021
EXAMPLE
a(4) = 3: {[3,1], [2,1,1], [1,1,1,1]}; a(5) = 4: {[5], [3,1,1], [2,1,1,1], [1,1,1,1,1]}.
MAPLE
with(combinat, partition):oddbigrevn:=proc(n::nonnegint) local evencount, oddcount, bigcount, parts, i, j; printlevel:=-1; bigcount:=0; partitions:=partition(n); for i from 1 to nops(partitions) do evencount:=0; oddcount:=0; for j from 1 to nops(partitions[i]) do if (op(j, partitions[i]) mod 2 <>0) then oddcount:=oddcount+1 fi; if (op(j, partitions[i]) mod 2 =0) then evencount:=evencount+1 fi od; if (evencount<oddcount) then bigcount:=bigcount+1 fi od; printlevel:=1; return(bigcount) end proc; seq(oddbigrevn(i), i=1..42);
# second Maple program:
b:= proc(n, i, t) option remember; `if`(n=0,
`if`(t>0, 1, 0), `if`(i<1, 0, b(n, i-1, t)+
`if`(i>n, 0, b(n-i, i, t+(2*irem(i, 2)-1)))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=1..80); # Alois P. Heinz, Mar 30 2014
MATHEMATICA
p[n_] := p[n] = Select[IntegerPartitions[n], Count[#, _?OddQ] > Count[#, _?EvenQ] &]; t = Table[p[n], {n, 0, 15}] (* partitions of n with # odd parts > # even parts *)
TableForm[t] (* partitions, vertical format *)
Table[Length[p[n]], {n, 1, 30}] (* A108950 *)
(* Peter J. C. Moses, Mar 10 2014 *)
b[n_, i_, t_] := b[n, i, t] = If[n==0, If[t>0, 1, 0], If[i<1, 0, b[n, i-1, t] + If[i>n, 0, b[n-i, i, t + (2*Mod[i, 2]-1)]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Nov 16 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Len Smiley, Jul 21 2005
EXTENSIONS
More terms from Joerg Arndt, Oct 04 2012
STATUS
approved